136 research outputs found

    Selective Kernel Attention for Robust Speaker Verification

    Full text link
    Recent state-of-the-art speaker verification architectures adopt multi-scale processing and frequency-channel attention techniques. However, their full potential may not have been exploited because these techniques' receptive fields are fixed where most convolutional layers operate with specified kernel sizes such as 1, 3 or 5. We aim to further improve this line of research by introducing a selective kernel attention (SKA) mechanism. The SKA mechanism allows each convolutional layer to adaptively select the kernel size in a data-driven fashion based on an attention mechanism that exploits both frequency and channel domain using the previous layer's output. We propose three module variants using the SKA mechanism whereby two modules are applied in front of an ECAPA-TDNN model, and the other is combined with the Res2Net backbone block. Experimental results demonstrate that our proposed model consistently outperforms the conventional counterpart on the three different evaluation protocols in terms of both equal error rate and minimum detection cost function. In addition, we present a detailed analysis that helps understand how the SKA module works.Comment: Submitted to INTERSPEECH 2022. 5 pages, 3 figures, 1 tabl

    Focal adhesion and actin organization by a cross-talk of TM4SF5 with integrin alpha 2 are regulated by serum treatment

    Get PDF
    The biological functions of transmembrane 4 L6 family member 5 (TM4SF5) homologues to a tumor-associated antigen L6 are unknown, although it is over-expressed in certain forms of cancer. In the present study, the ectopic expression of TM4SF5 in Cos7 cells reduced integrin signaling under serum-containing conditions, but increased integrin signaling upon serum-free replating on substrates. TM4SF5 regulated actin organization and focal contact dynamics via the serum treatment-dependent differential regulation of FAK Tyr925 and paxillin Tyr118 phosphorylations and their localizations on peripheral cell boundaries. Y925F FAK mutation abolished the TM4SF5 effects. TM4SF5 associated with integrin alpha 2 subunit, and this association was abolished by serum treatment. Furthermore, functional blocking anti-integrin alpha 2 antibody abolished TM4SF5-enhanced signaling activity and caused membrane blebbing with abnormal actin organization. TM4SF5 increased chemotactic but decreased haptotactic migration. Altogether, this study reveals the functions of TM4SF5 collaborative with integrin signaling to alter focal contact dynamics, actin reorganization, and migration. Furthermore, this study suggests a mechanism of cross-talk between TM4SF5 and integrin which is further regulated by growth factor signaling. (c) 2006 Elsevier Inc. All rights reserved.N

    Regulation of TM4SF5-mediated tumorigenesis through induction of cell detachment and death by tiarellic acid

    Get PDF
    mRNA for four-transmembrane L6 family member 5 (TM4SF5), a homolog of tumor antigen L6, was previously shown to be highly expressed in diverse tumors. We recently found that human hepatocarcinoma tissues also overexpressed TM4SF5 protein, in comparison to normal liver tissues.We also found that tiarellic acid (TA) caused cell detachment-related apoptosis in cells expressing endogenous or stably-overexpressing TM4SF5. When cells expressing TM4SF5 were treated with TA, we observed reduced phosphorylation of focal adhesion kinase, paxillin, and p130Cas, but not c-Src. TA treatment also caused focal adhesion loss and reduced cell adhesion, and increased the numbers of floating cells and apoptotic cells. These effects were blocked by overexpression of focal adhesion molecules, suggesting that treatment with TA mediates anoikis of TM4SF5-expressing cells. However, TM4SF5-null cells were not affected by TA, indicating that these effects occur specifically in TM4SF5-positive cells. TA administration reduced tumor formation in nude mice injected with TM4SF5-expressing cells, presumably through increased apoptosis in TM4SF5-positive tumors. These observations indicate that TM4SF5-positive tumorigenesis can be inhibited by TA via induction of cell detachment-related apoptosis, and suggest that TA may be developed as a putative therapeutic reagent against TM4SF5-positive tumorigenesis

    Saussurea lappa induces G2-growth arrest and apoptosis in AGS gastric cancer cells

    Get PDF
    The molecular effects of Saussurea lappa extracts, a traditional medicine in Eastern Asia, on the fate of gastric carcinoma have not been understood. In this study, its cytostatic effects were examined using gastric AGS cancer cells. Its treatment resulted in apoptosis and G2-arrest in a dose- and time-dependent manner. The effects were attributed to the regulation of cyclins and pro-apoptotic molecules and suppression of anti-apoptotic molecules. Therefore, these results suggest that extracts of S. lappa root may be a candidate to deal with gastric cancers either by traditional herbal therapy or by combinational therapy with conventional chemotherapy

    Towards single integrated spoofing-aware speaker verification embeddings

    Full text link
    This study aims to develop a single integrated spoofing-aware speaker verification (SASV) embeddings that satisfy two aspects. First, rejecting non-target speakers' input as well as target speakers' spoofed inputs should be addressed. Second, competitive performance should be demonstrated compared to the fusion of automatic speaker verification (ASV) and countermeasure (CM) embeddings, which outperformed single embedding solutions by a large margin in the SASV2022 challenge. We analyze that the inferior performance of single SASV embeddings comes from insufficient amount of training data and distinct nature of ASV and CM tasks. To this end, we propose a novel framework that includes multi-stage training and a combination of loss functions. Copy synthesis, combined with several vocoders, is also exploited to address the lack of spoofed data. Experimental results show dramatic improvements, achieving a SASV-EER of 1.06% on the evaluation protocol of the SASV2022 challenge.Comment: Accepted by INTERSPEECH 2023. Code and models are available in https://github.com/sasv-challenge/ASVSpoof5-SASVBaselin

    In vivo biomechanical measurement and haptic simulation of portal placement procedure in shoulder arthroscopic surgery.

    No full text
    A survey of 67 experienced orthopedic surgeons indicated that precise portal placement was the most important skill in arthroscopic surgery. However, none of the currently available virtual reality simulators include simulation / training in portal placement, including haptic feedback of the necessary puncture force. This study aimed to: (1) measure the in vivo force and stiffness during a portal placement procedure in an actual operating room and (2) implement active haptic simulation of a portal placement procedure using the measured in vivo data. We measured the force required for port placement and the stiffness of the joint capsule during portal placement procedures performed by an experienced arthroscopic surgeon. Based on the acquired mechanical property values, we developed a cable-driven active haptic simulator designed to train the portal placement skill and evaluated the validity of the simulated haptics. Ten patients diagnosed with rotator cuff tears were enrolled in this experiment. The maximum peak force and joint capsule stiffness during posterior portal placement procedures were 66.46 (ยฑ10.76N) and 2560.82(ยฑ252.92) N/m, respectively. We then designed an active haptic simulator using the acquired data. Our cable-driven mechanism structure had a friction force of 3.763 ยฑ 0.341 N, less than 6% of the mean puncture force. Simulator performance was evaluated by comparing the target stiffness and force with the stiffness and force reproduced by the device. R-squared values were 0.998 for puncture force replication and 0.902 for stiffness replication, indicating that the in vivo data can be used to implement a realistic haptic simulator

    Allowable Pitch Angle of Aerodynamic Imbalance Due to Individual Pitch Movement for Ultimate Loads on Offshore Wind Turbine Using Artificial Neural Network

    No full text
    This study aims to calculate the ultimate loads through integrated load analysis under aerodynamic imbalance by individual pitch movement of offshore wind turbines, and based on this, to identify the allowable region of the individual pitch angle of the blade. For this, 5 MW offshore wind turbines were modeled using GH-BladedTM based on jacket type substructure data of the NREL-5 MW generic model and Upwind reports. For integrated load analysis, wind speeds were selected: 11 m/s, 14 m/s, 17 m/s, 20 m/s, 22 m/s, and 24 m/s. Ultimate load analysis was performed through the fixed pitch control mode with the individual pitch angles at an interval of 2°, ranging from 0° to 30°. Analysis was performed for the collective pitch control under the same environmental conditions as IPC. Through the comparison of loads at hub for CPC and the individual pitch movement states calculated through integrated load analysis, we identified the allowable pitch angle region where the ultimate loads of the individual pitch movement conditions were less than those of the CPC conditions. Furthermore, pattern analysis was performed using the artificial neural network for numerical modeling of the allowable pitch angle region. The results confirmed a high success rate of over 99%. Based on these results, this study suggested a new model according to the wind speed for the allowable pitch angle region

    Epigenetic regulation of integrin-linked kinase expression depending on adhesion of gastric carcinoma cells

    Get PDF
    Cell adhesion to the extracellular matrix (ECM) regulates gene expressions in diverse dynamic environments. However, the manner in which gene expressions are regulated by extracellular cues is largely unknown. In this study, suspended gastric carcinoma cells showed higher basal and transforming growth factor- 1 (TGF 1)-mediated acetylations of histone 3 (H3) and Lys9 of H3 and levels of integrinlinked kinase (ILK) mRNA and protein than did fibronectin-adherent cells did. Moreover, the insignificant acetylation and ILK expression in adherent cells were recovered by alterations of integrin signaling and actin organization, indicating a connection between cytoplasmic and nuclear changes. Higher acetylations in suspended cells were correlated with associations between Smad4, p300/CBP, and Lys9-acetylated H3. Meanwhile, adherent cells showed more associations between HDAC3, Ski, and MeCP2. Chromatin immunoprecipitations with anti-acetylated H3, Lys9-acetylated H3, or p300/CBP antibody resulted in more coprecipitated ILK promoter, correlated with enhanced ILK mRNA and protein levels, in suspended cells. Moreover, ILK expression inversely regulated cell adhesion to ECM proteins, and its overexpression enhanced cell growth in soft agar. These observations indicate that cell adhesion and/or its related molecular basis regulate epigenetic mechanisms leading to a loss of ILK transcription, which in turn regulates cell adhesion property in a feedback linkage
    • โ€ฆ
    corecore