88 research outputs found

    STAT1 and Nmi are downstream targets of Ets-1 transcription factor in MCF-7 human breast cancer cell

    Get PDF
    AbstractEts-1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. Ets-1 controls the expression of critical genes involved in these processes by binding to ets binding sites present in the transcriptional regulatory regions. Here, we transiently overexpressed Ets-1 in MCF-7 and comprehensively searched for potential downstream targets of Ets-1 by cDNA microarray analysis. The expressions of several interferon-related genes including STAT1 and Nmi were augmented by the overexpression of Ets-1. RT-PCR and Western blotting confirmed the increase in the levels of STAT1 and Nmi mRNA and protein. In contrast, Ets-1 siRNA decreased the expression of STAT1 and Nmi proteins. As in our transient transfection experiments, stable overexpression of Ets-1, also increased the protein expression of STAT1 and Nmi in MCF-7 cells. Taken together, our results indicate that STAT1 and Nmi are downstream targets of Ets-1 in MCF-7 human breast cancer cells

    Epidemiologic survey of head and neck cancers in Korea.

    Get PDF
    Head and neck cancers have never been systematically studied for clinical purposes yet in Korea. This epidemiological survey on head and neck cancer patients was undertaken from January to December 2001 in 79 otorhinolaryngology resident-training hospitals nationwide. The number of head and neck cancer patients was 1,063 cases in the year. The largest proportion of cases arose in the larynx, as many as 488 cases, which accounted for 45.9%. It was followed by, in order of frequency, oral cavity (16.5%), oropharynx (10.0%), and hypopharynx (9.5%). The male:female ratio was 5:1, and the mean age was 60.3 yr. Surgery was the predominant treatment modality in head and neck cancers: 204 (21.5%) cases were treated with only surgery, 198 (20.8%) cases were treated with surgery and radiotherapy, 207 cases (21.8%) were treated with combined therapy of surgery, radiotherapy, and chemotherapy. Larynx and hypopharynx cancers had a stronger relationship with smoking and alcohol drinking than other primary site cancers. Of them, 21 cases were found to be metastasized at the time of diagnosis into the lung, gastrointestinal tract, bone, or brain. Coexisting second primary malignancies were found in 23 cases. At the time of diagnosis, a total of 354 cases had cervical lymph node metastasis accounting for 42.0%

    Quality of life outcomes including neuropathy-associated scale from a phase II, multicenter, randomized trial of eribulin plus gemcitabine versus paclitaxel plus gemcitabine as first-line chemotherapy for HER2-negative metastatic breast cancer: Korean Cancer Study Group Trial (KCSG BR13-11)

    Get PDF
    Background A phase II clinical trial of the comparison between eribulin plus gemcitabine (EG) and paclitaxel plus gemcitabine (PG) as first-line chemotherapy for patients with metastatic breast cancer (MBC) found that the EG regimen was less neurotoxic, but was similar in efficacy to the PG regimen. In the present study, we analyzed functional assessment of cancer therapy-taxane (FACT-Taxane) questionnaires from patients in this clinical trial to determine their quality of life (QoL). Methods QoL was assessed using the Korean version of the FACT-Taxane questionnaires. After baseline assessment, QoL was assessed every 2 cycles for 12 cycles and every 3 cycles thereafter. The linear mixed model was used to evaluate the difference in QoL between the EG and PG arms. Results Of the 118 enrolled patients, 117 responded to the FACT-Taxane questionnaires at baseline, 1 in the PG arm did not. Baseline QoL scores were not different between the EG and PG arms. During treatment, taxane subscale scores were significantly higher in the PG arm than in the EG arm after 2–13 cycles of chemotherapy (all P < 0.05), except for the 11th cycle. Neuropathy-specific analysis showed that patients in the PG arm had earlier and more severe neuropathic symptoms than those in the EG arm (P < 0.001). Conclusions In our QoL analysis, the EG regimen delayed and decreased neuropathy as compared with the PG regimen. Therefore, eribulin would be a reasonable substitute for paclitaxel as first-line chemotherapy for MBC.This study was supported by Eisai Korea Inc. (supplied eribulin), Dong-A ST Co., Ltd. (supplied gemcitabine), and Samyang Biopharmaceuticals (supplied paclitaxel). This work was supported by a grant from the Ministry of Health and Welfare, Republic of Korea (HA17C0055) and by the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (1720150)

    Neuronal Apoptosis Inhibitory Protein is Overexpressed in Patients with Unfavorable Prognostic Factors in Breast Cancer

    Get PDF
    Neuronal apoptosis inhibitory protein (NAIP) is a recently identified inhibitor of apoptosis protein. However, the clinical relevance of NAIP expression is not completely understood. In an attempt to determine the clinical relevance of NAIP expression in breast cancer, the levels of NAIP and survivin expression were measured in 117 breast cancer samples and 10 normal breast tissues using quantitative reverse-transcriptase-polymerase chain reaction. While there was no evidence of NAIP expression in the normal breast tissue, NAIP was expressed in all breast cancer samples. The level of NAIP expression in breast cancer was significantly higher (257 times) than in the universal tumor control. There was a strong correlation between the level of NAIP expression and the level of survivin expression (p=0.001). The level of NAIP expression in patients with a large tumor (≥T2) and patients with an unfavorable histology (nuclear grade III) was significantly higher than in those patients with a small tumor (T1) and patients with a favorable histology (nuclear grade I, II) (p=0.026 and p=0.050, respectively). Although the level of NAIP expression was higher in patients with other unfavorable prognostic factors, it was not significant. The three-year relapse-free survival rate was not significantly the patients showing high NAIP expression and patients showing low NAIP expression (86.47±4.79% vs. 78.74±6.57%). Further studies should include the expressions of NAIP in a larger number of patients and for a longer period of follow-up to evaluate correlation with metastasis and treatment outcome. In conclusion, NAIP is overexpressed in breast cancer patients with unfavorable clinical features such as stage and tumor size, suggesting that NAIP would play a role in the disease manifestation

    Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area

    No full text
    Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m

    Extended Line Map-Based Precise Vehicle Localization Using 3D LIDAR

    No full text
    An Extended Line Map (ELM)-based precise vehicle localization method is proposed in this paper, and is implemented using 3D Light Detection and Ranging (LIDAR). A binary occupancy grid map in which grids for road marking or vertical structures have a value of 1 and the rest have a value of 0 was created using the reflectivity and distance data of the 3D LIDAR. From the map, lines were detected using a Hough transform. After the detected lines were converted into the node and link forms, they were stored as a map. This map is called an extended line map, of which data size is extremely small (134 KB/km). The ELM-based localization is performed through correlation matching. The ELM is converted back into an occupancy grid map and matched to the map generated using the current 3D LIDAR. In this instance, a Fast Fourier Transform (FFT) was applied as the correlation matching method, and the matching time was approximately 78 ms (based on MATLAB). The experiment was carried out in the Gangnam area of Seoul, South Korea. The traveling distance was approximately 4.2 km, and the maximum traveling speed was approximately 80 km/h. As a result of localization, the root mean square (RMS) position errors for the lateral and longitudinal directions were 0.136 m and 0.223 m, respectively

    Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Get PDF
    A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs) are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment

    Comparison of GPS Tracking Loop Performance in High Dynamic Condition with Nonlinear Filtering Techniques

    No full text
    The conventional GPS tracking loop is optimal in Maximum likelihood Estimation (MLE), respectively. It well works in normal signal to noise ratio (SNR) and signal dynamics within the tracking loop bandwidth. But, when the receiver operates in high dynamic environment, discriminator linearity doesn't maintain and tracking loop error increase. In the previous rearch, several algorithms were proposed to overcome these problems such as EKF based tracking loop, grid method. In the previous paper [Gee, ENC 2005], LQG based GPS receiver tracking loop is developed using EKF and Linear Quadratic Regulator (LQR). The EKF estimate the range rate, code phase, carrier phase error and navigation bit from inphase and quadrature measurement. And LQR calculate the optimal DCO input using pre-calculated steady state feedback gain. It had good tracking performance than conventional tracking loop in normal condition because it is designed to consider correlation of code and carrier tracking loop. But there is problem about nonlinearity of measurement model as ever. In this paper, LQG based GPS tracking loop is implemented using nonlinear filtering techniques, i.e. Unscented Kalman Filter (UKF) and Particle Filter (PF). Also, the implemented algorithm performance is evaluated and compared. In the EKF, the measurement equations are linearized to the first order Taylor series in order to apply the Kalman filter, which is supposed to linear Gaussian systems. Instead of truncating the nonlinear measurement equation the UKF and PF approximate the distribution of the state deterministically and randomly, with a finite set of samples, and then propagate these points or particles through the original nonlinear functions, respecively. Because the nonlinear funcions are used without approximation, it provides the better performance.BK2

    Adaptive vector-tracking loop for low-quality GPS signals

    No full text
    corecore