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Abstract Ets-1 is a cellular homologue of the product of the
viral ets oncogene of the E26 virus, and it functions as a tissue-
specific transcription factor. It plays an important role in cell
proliferation, differentiation, lymphoid cell development, trans-
formation, angiogenesis, and apoptosis. Ets-1 controls the
expression of critical genes involved in these processes by binding
to ets binding sites present in the transcriptional regulatory re-
gions. Here, we transiently overexpressed Ets-1 in MCF-7 and
comprehensively searched for potential downstream targets of
Ets-1 by cDNA microarray analysis. The expressions of several
interferon-related genes including STAT1 and Nmi were aug-
mented by the overexpression of Ets-1. RT-PCR and Western
blotting confirmed the increase in the levels of STAT1 and
Nmi mRNA and protein. In contrast, Ets-1 siRNA decreased
the expression of STAT1 and Nmi proteins. As in our transient
transfection experiments, stable overexpression of Ets-1, also in-
creased the protein expression of STAT1 and Nmi in MCF-7
cells. Taken together, our results indicate that STAT1 and
Nmi are downstream targets of Ets-1 in MCF-7 human breast
cancer cells.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The Ets-1 protein is a member of the Ets family of transcrip-

tion factors that share a unique DNA binding domain, the Ets

domain [1]. The DNA binding domain allows these proteins to

specifically bind to promoter elements that contain a GGAA/T

motif, and it has been a challenge to differentiate redundant

from specific functions of various Ets proteins in vivo. How-

ever, it has been suggested that such functional redundancy

may be a central component of a network of differentially reg-

ulated specific Ets factors, resulting in distinct biological and

pathological consequences [2]. The Ets proteins transcription-

ally regulate a number of genes involved in cellular prolifera-
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tion, differentiation, development, hematopoiesis, apoptosis,

metastasis, tissue remodeling, angiogenesis and malignant

transformation of cell. The Ets transcription factors have been

implicated in tumorigenesis both through formation of gain-

of-function oncoproteins in acute leukemia and Ewing sarcoma

and through overexpression in tumors of epithelial origin,

including breast cancer [3,4]. Fusion proteins formed between

the pointed domain of the Ets transcriptional repressor TEL

and certain kinases or between TEL and the transcription factor

AML-1 are known to be responsible for the development of

leukemia by rendering constitutively active kinases [5,6]. In

Ewing�s tumor, the Ets domain of Fli-1, Erg-1, ETV-1, E1AF

or FEV is fused to the Ewing sarcoma protein generating a

transforming transcription factor that deregulates transcription

[7].

Upregulation of expression of the Ets-1 gene, a prototype ets

gene, has been documented in many types of human cancers,

including epithelial ovarian tumors and breast cancer [8–11].

The degree of Ets-1 expression was correlated to the extent

of breast carcinoma invasion and the atypism of carcinoma

was significantly correlated with Ets-1 expression [10]. Ets-1

has been reported as an independent prognostic marker for

breast relapse-free survival in breast cancer, which was not

linked to other tumor markers, such as nodal status, tumor

size, histological grade or estrogen receptor status [9]. In addi-

tion, the role of Ets-1 protein in breast cancer metastasis has

been implicated by finding high Ets-1 protein levels in breast

cancer tissues compared to the fibroadenoma specimens and

by the correlation with urokinase plasminogen activator

(uPA), a matrix-degrading protease [11]. The Ets factors Ets-

1, Ets2, Fli1, and Erg transform cells when overexpressed, an

effect that is associated with the stimulation of cell prolifera-

tion [12–15]. Few other functional roles of Ets-1 in tumorigen-

esis have also been postulated. Ets-1 regulates the expression

of genes encoding for enzymes involved in degradation of

the extracellular matrix, such as MMP-1, MMP-3, MMP-7,

and MMP-9 [16]. It has been demonstrated that the expression

of Ets-1 lacking its activation domain decreased uPA proteo-

lytic activity and cell motility and impaired normal tubulogen-

esis and cancerous scattering in mammary epithelial cells [17].

These findings imply that Ets-1 is required for mammary onco-

genesis by regulating the expression of target genes whose

products play critical roles in breast cancer, although an array
blished by Elsevier B.V. All rights reserved.
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of target genes and the interactive cellular mechanism remain

undefined.

Over 200 ets target genes were identified and an array of

genes has been shown to be regulated via ets binding sites

[16]. The identification of downstream cellular target genes

of ets proteins is essential. The objective of the present study

was to identify potential downstream target genes of Ets-1 in

MCF 7 breast cancer line in order to further clarify its role

and mechanism in mammary tumorigenesis. We transiently

overexpressed Ets-1 gene in Ets-1 deficient MCF-7 breast can-

cer cell and comprehensively searched for potential down-

stream targets by cDNA microarray analysis. Transiently

transfected Ets-1 in MCF-7 breast cancer cell line induced

interferon-related genes including STAT1 and Nmi, which

were confirmed in stably ets-1 transfected MCF-7 cell. Results

suggest that STAT1 (signal transducers and activators of tran-

scription) and Nmi (N-Myc-interacting protein) are down-

stream targets of Ets-1 in breast cancer.
2. Materials and methods

2.1. Cell lines
MCF-7 and MDA-MB-231 cell lines were purchased from the

American Type Culture Collection (Manassas, VA) and cultured and
maintained in RPMI 1640 medium (BioWhittaker, Walkersville,
MD) supplemented with 10% fetal bovine serum, penicillin, and strep-
tomycin at 37 �C in 5% CO2.

2.2. Transient and stable transfection of Ets-1 into MCF-7 cells
An expression vector for FLAG-tagged Ets-1 was constructed by

subcloning PCR-amplified cDNA into the G418-resistant plasmid
pcDNA3.1 vector. MCF-7 cells were transiently transfected using
Effectene transfection reagent (QIAGEN Inc., Valencia, CA) accord-
ing to the manufacture�s instructions. MCF-7 cells were stably trans-
fected with either vector (pcDNA3.1-Ets-1) or pcDNA3.1 in the
presence of Effectene transfection reagent (QIAGEN Inc.) for 48 h
and treated with 500 lg/ml of G418, and G418-resistant colonies were
selected for two months.

2.3. RT-PCR analysis
Total cellular RNA was isolated by using Trizole (Gibco BRL,

Carlsbad, CA) according to the manufacturer�s instruction. For re-
verse transcription (RT)-PCR, 2 lg of RNA was treated with
RNase-free DNase, and cDNA was obtained using Moloney murine
leukemia virus reverse transcriptase. cDNA (1 ll) was amplified by
PCR (denaturation for 1 m at 94 �C, annealing for 1 m at 58 �C, and
elongation for 1 m at 72 �C) using Ets-1 (28 cycles), STAT1 (30 cycles),
Nmi (30 cycles) or b-actin primers (25 cycles). The primers used in this
analysis are as follows: b-actin, 5 0-atc tgg cac cac acc ttc tac aat gag ctg
ctg cg-3 0 and 5 0-cgt cat act cct gct tgc tga tcc aca tct g-3 0; Ets-1, 5 0-aaa
cag caa agaaat gat gt-3 0 and 5 0-gct cga gaa agc agtctt ta-3 0; STAT1, 5 0-
gat act tta gct tta att tta aaa caa aac-3 0 and 5 0-gtt att agg gtg gta ttt agt
cta tta-3 0; Nmi, 5 0-ata aac aaa act ttt tat tac agt gca ctt-3 0 and 5 0-gca
gtg ctt ctg aca gga gt-3 0. The reaction products were visualized by sub-
jecting them to electrophoresis in 1.5% agarose in 1· TBE buffer con-
taining 0.5 lg/ml ethidium bromide. The final normalized results were
calculated by dividing the relative transcript levels of the test genes by
the relative amounts of b-actin transcripts.
2.4. Western blot analysis and antibodies
Total cell extracts were obtained using ice-cold RIPA buffer (0.5%

sodium deoxycholate, 1% Nonidet P-40, 150 mM NaCl, 50 mM Tris,
pH 7.5, 0.1% SDS, and 1 mM PMSF). After 20-min incubation of
the cell extracts on ice, they were centrifuged for 20 min at 12000 · g
at 4 lg and the supernatant collected. Proteins were quantified with
the BCA protein assay kit (Pierce, Rockford, IL, USA). Lysates con-
taining equal amount of total protein were separated by SDS–PAGE
under reducing conditions and transferred to nitrocellulose membrane.
The membrane was incubated for 2 h in blocking solution containing
5% non-fat dry milk to inhibit non-specific binding. The membrane
was incubated with the primary antibody for 2 h. After several washes
in PBS, the membrane was incubated with 1:3000 HRP-conjugated
secondary antibodies (Zymed). The blots were developed using the
ECL chemiluminescent kit (Amersham, Arlington Heights, IL). Anti-
Ets-1 (dilution factor 1:1000), STAT1 (Stat1 alpha p91 (C-111),
1:1000), phospho-STAT1 (1:1000) and Nmi (1:1000) antibodies were
used, which were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA). Anti-b-actin FLAG was purchased from Sigma (St. Louis,
MO).

2.5. cDNA microarray analysis
The cDNA microarray containing a set of 17448 sequence-verified

human cDNA clone was provided by GenomicTree Inc. (Korea).
The synthesis of target cDNA probes and hybridization were per-
formed as previously described [18]. Each 100 lg total RNA was re-
verse transcribed in the presence of Cy3 or Cy5-dUTP (NEN Life
Sciences, Boston, MA) at 42 �C for 2 h. The control RNA was labeled
with fluorescent Cy3-dUTP and the testing RNA was labeled with
fluorescent Cy5-dUTP. Both the Cy3 and Cy5-labeled cDNAs were
purified using PCR purification kit (QIAGEN Inc.) as recommended
by the manufacturer. The purified cDNA was resuspended in 80 ll
of hybridization solution containing 3.5· SSC, 0.3% SDS, 20 lg of hu-
man Cot-1 DNA, 20 lg of poly A RNA and 20 lg of the yeast tRNA
(Invitrogen, Carlsbad, CA). The hybridization mixtures were heated at
100 �C for 2–3 min and directly pipetted onto microarrays. The arrays
hybridized at 65 �C for 12–16 h in the humidified hybridization cham-
ber (GenomicTree Inc.). The hybridized microarrays were washed with
2· SSC for 2 min, 0.1· SSC/0.1% SDS for 5 min, and 0.1· SSC for
5 min. The washed microarrays were immediately dried using
the microarray centrifuge (GenomicTree Inc.). All microarray hybrid-
izations were performed in duplicates and we collected the average
data.

2.6. Data acquisition and analysis
The hybridization images were analyzed by GenePix Pro 4.0 (Axon

Instruments, CA). The average fluorescence intensity for each spot was
calculated and local background was subtracted. All data normali-
zation and statistical analysis were performed using GeneSpring 6.1
(Silicon Genetics, USA). Genes were filtered according to the two-
component model for estimating variation from control strength
[19]. Intensity-dependent normalization (Lowess) was performed,
where the ratio was reduced to the residual of the Lowess fit of the
intensity vs. ratio curve. The averages of normalized ratios were calcu-
lated by dividing the average of normalized signal channel intensity by
the average of normalized control channel intensity. Hierarchical clus-
tering was performed by similarity measurements based on Pearson
correlations around 0. Functional annotation of genes was performed
according to Gene Ontologye Consortium (http://www.geneontology.
org/index.shtml) by GeneSpring 6.1.
2.7. siRNA synthesis
Small interfering RNA (siRNA) were synthesized and high-perfor-

mance purified (Qiagen-Xeragon, Germantown, MD). The sequence
of siRNA Ets-1 targeting nucleotides was 50

r(GGUGUGCUGUU-
UGGAGUUC)d(TT)3

0
and its corresponding complementary strand

5 0
r(GAACUCCAAACAGCACACC)d(TT)3

0
. siRNAs were dissolved

in buffer (100 mM potassium acetate, 30 mM HEPES–potassium
hydroxide, and 2 mMmagnesium acetate, pH 7.4) to a final concentra-
tion of 20 lM. The siRNA solutions were heated to 90 �C for 60 s and
incubated at 37 �C for 60 min prior to use to disrupt any higher order
aggregates formed during synthesis.
2.8. Small interfering RNA
The 2 · 105 cells were plated into 35 mm 6-well plate and allowed to

adhere for 24 h. Eight microliters of RNAiFect transfection reagent
(QIAGEN Inc.) and two microliters of siRNA solution per well was
added to Buffer EC-R for a final complexing volume of 100 ll. This
complex was gently mixed and incubated at room temperature for
20 min. The transfection agent/siRNA complex was added into the
wells containing 1900 ll DMEM with 10% FBS and incubated in nor-
mal cell culture conditions.
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Table 1
List of augmented genes in cDNA microarray analysis

Type of gene Fold
induction

IFN-induced transmembrane protein 2 (1-8D) 6.973
Nmi 12.6
IFN-a inducible protein (clone IFI-15K) 29.32
IFN-a inducible protein (clone IFI-6-16) 18.364
IFN-induced transmembrane protein 2 (1-8D) 10.003
IFN-stimulated gene 20 kDa 8.90
IFN-stimulated transcription factor 3, gamma 48 kDa 8.652
STAT1 5.17
B-factor, properdin 4.631
Nerve growth factor receptor
(TNFR superfamily, member 16)

4.25

Major histocompatibility complex, class I, C 4.25
Nuclear transport factor 2 3.02
Bone marrow stromal cell antigen 2 16.18
Leucine aminopeptidase 3 6.191
Lectin, galactoside-binding, soluble, 3 binding protein 15.807
Cullin 5 8.61
Apolipoprotein L, 3 10.49
Adrenergic, alpha-1D-, receptor 5.312
Myeloid differentiation primary response gene 3.232
Metallothionein 1B 2.94
Proteasome (prosome, macropain) subunit, beta type 4.897
Major histocompatibility complex, class I, A 4.13
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3. Results

3.1. cDNA microarray results in ets-1 transiently transfected

MCF-7 cell line

To identify genes transcriptionally regulated by Ets-1 in

breast cancer cells, we transfected MCF-7 cell line with Ets-1

and compared the expression profile with that of MCF-7 in-

fected with G418-resistant plasmid pcDNA3.1 vector. In order

to minimize the interaction with endogenous Ets-1, MCF-7,

MDA-MB-231, SKBR-3 breast cancer cell lines were pre-

screened for the level of endogenous Ets-1 expression and

found that MCF-7 cell line expressed less than 10% compared

to other cell lines (data not shown). After 24 h incubation, we

analyzed the expression profile with a cDNA microarray.

Among the 17448 human genes in the microarray, 286 of them

were augmented in their expression more than 2-fold and 42 of

them were augmented in t test. Of the 42 augmented genes in

cDNA microarray analysis, relevant genes are listed in Table

1. In particular, genes coding for proteins involved in inter-

feron (IFN) signaling pathway, such as IFN-a inducible pro-

tein (clone IFI-15K, IFI-6-16), IFN-induced transmembrane

protein 2 (1-8D), IFN-c induced protein, IFN-stimulated gene

20 kDa, IFN-stimulated transcription factor 3, gamma

48 kDa, STAT1 and Nmi were markedly augmented in their

expression level.

Of these proteins, we were interested in STAT1 and Nmi in

relation to Ets-1 overexpression in breast cancer cells. STAT1,

a member of the STAT family, plays an essential role in regu-

lating the growth, differentiation, death of normal and tumor

cells in response to various stimuli, including cytokines and

growth factors [20]. Nmi has been shown to augment STAT-

mediated transcription in response to IL-2 and IFN-c [21].

Because there were significantly augmented expressions of

IFN-related protein after transfection with Ets-1 construct,

we investigated the transcriptional regulation of STAT1 and

Nmi by Ets-1. As shown in Fig. 1A, transient overexpression
of Ets-1 gene led to an enhancement of STAT1 and Nmi

mRNA expression levels. A time course experiment revealed

that an increase in the level of STAT1 and Nmi proteins were

evident as early as 24 h after the Ets-1 transfection and contin-

ued to increase until 48 h after transfection (Fig. 1B). The in-

crease in expression level of phospho-STAT1 was observed

at 24 h after the Ets-1 transfection by Western analysis

(Fig. 1C).

3.2. Ets-1 enhances STAT1 and Nmi expression in a stable

MCF-7 cell line

In order to investigate the effect of an intracellular accumu-

lation of Ets-1, we established a stable MCF-7 cell line trans-

fected with either Ets-1 or a vector. Nine G418-resistant

clones were isolated and screened for expression of Ets-1 by

RT-PCR and Western blot analysis. As shown in Fig. 2, clone

#10 and #14 stably expressed Ets-1 protein and showed in-

creased expression of STAT1 and Nmi, whereas clone #1

(without Ets-1 expression) did not show STAT1 or Nmi

expression in Western blot or RT-PCR analysis. These data

demonstrated that the overexpression of Ets-1 has led to an

enhancement of intracellular STAT1 and Nmi expression.

3.3. STAT1 and Nmi induction are blocked by Ets-1 siRNA in

MCF-7 cell

siRNA to Ets-1 provide further evidence for the positive

regulatory role of Ets-1 in the regulation of STAT1 and Nmi

(Fig. 3). The ability of Ets-1 siRNA to suppress Ets-1 expres-

sion was confirmed by Western blot analysis. Up to 50% sup-

pression of Ets-1 protein expression was observed within 24 h

of transfection. Actin expression was unaffected by either con-

trol or Ets-1 siRNA treatment, indicating that non-specific

downregulation of protein expression did not occur (data not

shown). Next, we determined the effect of Ets-1 siRNA on

STAT1 and Nmi expression in MDA-MB-231, which ex-

presses endogenous Ets-1 in higher level than MCF-7. STAT1

and Nmi were both downregulated by the addition of Ets-1

siRNA in MDA-MB-231 cell line.
4. Discussion

Recently, the association of Ets-1 with invasiveness and

metastasis has been implicated in breast cancer cells. The de-

tailed mechanism of how Ets-1 modulate the downstream gene

transcription during tumorigenesis remains uncertain. The

goal of this study was to identify downstream cellular targets

that are either directly or indirectly regulated by the Ets-1 proto-

oncogene. The cDNA microarray analysis revealed that Ets-1

augmented the expression of 9 IFN-related genes in breast can-

cer cells. None of these genes have been previously recognized

as putative targets of Ets-1 in breast cancer. We further clari-

fied two of these genes, STAT1 and Nmi.

STAT protein usually exists in the cytoplasm as a monomer

in unstimulated cells and forms a dimer upon activation by

tyrosine phosphorylation in response to ligand stimulation.

The STAT dimer then translocates into the nucleus to activate

transcription of various genes. Initially identified as playing a

key role in hematologic and immune cells, STATs are increas-

ingly recognized as an important factor in a wide array of hu-

man cancers. A number of proteins have been identified to



Fig. 1. Effect of exogenous Ets-1 on the expression of STAT and Nmi. Characterization of MCF-7 cells transiently transfected with an Ets-1
expression plasmid. (A) MCF-7 cells were transfected with Ets-1-FLAG construct and total RNA was extracted from the cells. STAT1 and Nmi
mRNA level was assessed by RT-PCR. The RNA amount was quantified by densitometric analysis, and the ratio of STAT, Nmi/b-actin in each lane
was calculated. (B) MCF-7 cells were transfected with Ets-1-FLAG construct and were harvested at the indicated time. Ets-1, FLAG, STAT1 and
Nmi protein level were assessed by Western blot. The protein amount was quantified by densitometric analysis, and the ratio of STAT, Nmi/b-actin
in each lane was calculated.
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interact with STATs and modulate the activity of STATs at

various steps of the activation–inactivation cycle [22]. Acti-

vated STAT1, in particular, has been found in nuclear extracts

from breast cancer specimens [23]. The role of STAT1 activa-

tion is not clear in mammary tumorigenesis, however. Breast

cancer patients with high STAT1 activation were reported to

have a longer overall and relapse-free survival, although the

STAT1 activation and expression of the STAT1 protein were

not linked [24]. Few studies have suggested a direct binding

of Ets-1 and STAT proteins. Travagli et al has demonstrated

that Ets-1 physically interacts with STAT6, which is implicated

in the regulation of Socs-1 expression in human keratinocytes

[25]. The involvement of STAT1 and Ets elements such as

PU.1 and Spi-B in interferon-c induction of CD40 transcrip-

tion in macrophages has recently been proposed [26]. The cel-
lular implication of the physical binding between STAT1 and

Ets-1 in breast cancer cells needs to be defined.

Nmi was originally identified as a binding partner to the

Myc family proteins Max and Mxi [27]. Nmi lacks an intrinsic

transcriptional activation domain, but augments transcription

in both Il-2-IFN-a-mediated signaling by acting as an adaptor.

In a yeast two-hybrid screen using the coiled-coil region of

STAT5b as the bait, Nmi was identified as a STAT5-interact-

ing protein [28]. In this study, Nmi has been suggested

as a potentiator of transcription that enhances the recruitment

of coactivators to STATs in response to interleukin-2 and

IFN-c. Interestingly, they found that Nmi also interacted

with all STAT proteins except STAT2. In this study, we found

that the expressions of Nmi protein and mRNA were elevated

in Ets-1 transfected cells. Although the exact mechanism



Fig. 2. Effect of endogenous Ets-1 on the expression of STAT and Nmi. Characterization of MCF-7 cells stably transfected with an Ets-1 expression
plasmid. (A) Ets-1, FLAG, STAT and Nmi protein levels determined by Western blot in control and Ets-1-FLAG transfected MCF-7 clones. (B) Ets-
1, STAT and Nmi RNA levels determined by RT-PCR in control and Ets-1-FLAG transfected MCF-7 clones. Lane 1, parental cell; lane 2, MCF-7
cells only transfected with the plasmid that confers resistance to G418; lanes 3–4, Ets-1-FLAG transfected clones #1, #2; lanes 5–6, cells transfected
with the same plasmid as lane 2 but containing also the Ets-1-FLAG construct.

Fig. 3. The downregulation of STAT1 by Ets-1 siRNA. Representative Western blot for Ets-1 and STAT1 following treatment with Ets-1 siRNA.
Ets-1 and STAT1 expressions were suppressed by Ets-1-specific siRNA. b-Actin expression was unaffected by siRNA treatment.
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underlying Ets-1 induced Nmi expression remains uncertain, it

can be speculated that Nmi may interact with STAT1, which is

upregulated by Ets-1.

Taken together, cDNA gene expression profiling analysis

demonstrated that STAT1 and Nmi are downstream cellular

targets of Ets-1 in breast cancer cells. These proteins may be

postulated to be potential targets to control tumor-associated

Ets-1 activity in breast cancer patients.
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