7,453 research outputs found

    How dsDNA breathing enhances its flexibility and instability on short length scales

    Full text link
    We study the unexpected high flexibility of short dsDNA which recently has been reported by a number of experiments. Via the Langevin dynamics simulation of our Breathing DNA model, first we observe the formation of bubbles within the duplex and also forks at the ends, with the size distributions independent of the contour length. We find that these local denaturations at a physiological temperature, despite their rare and transient presence, can lower the persistence length drastically for a short DNA segment in agreement with experiment

    Common gauge origin of discrete symmetries in observable sector and hidden sector

    Full text link
    An extra Abelian gauge symmetry is motivated in many new physics models in both supersymmetric and nonsupersymmetric cases. Such a new gauge symmetry may interact with both the observable sector and the hidden sector. We systematically investigate the most general residual discrete symmetries in both sectors from a common Abelian gauge symmetry. Those discrete symmetries can ensure the stability of the proton and the dark matter candidate. A hidden sector dark matter candidate (lightest U-parity particle or LUP) interacts with the standard model fields through the gauge boson Z', which may selectively couple to quarks or leptons only. We make a comment on the implications of the discrete symmetry and the leptonically coupling dark matter candidate, which has been highlighted recently due to the possibility of the simultaneous explanation of the DAMA and the PAMELA results. We also show how to construct the most general U(1) charges for a given discrete symmetry, and discuss the relation between the U(1) gauge symmetry and R-parity.Comment: Version to appear in JHE

    Elastic constants of borocarbides. New approach to acoustic Measurement technique

    Full text link
    A new version of the phase method of determining the sound velocity is proposed and implemented. It utilizes the ``Nonius'' measurement technique and can give acceptable accuracy (~1%) in samples of submillimeter size. Measurements of the sound velocity are made in single-crystal samples of the borocarbides RNi2B2C (R = Y,Lu,Ho). The elastic constants and the Debye temperature are calculated.Comment: 5 figures, 2 table

    Optical properties of metal nanoparticles with no center of inversion symmetry: observation of volume plasmons

    Full text link
    We present theoretical and experimental studies of the optical response of L-shaped silver nanoparticles. The scattering spectrum exhibits several plasmon resonances that depend sensitively on the polarization of the incident electromagnetic field. The physical origin of the resonances is traced to different plasmon phenomena. In particular, a high energy band with unusual properties is interpreted in terms of volume plasmon oscillations arising from the asymmetry of a nanoparticle.Comment: 14 pages, 5 figures. Physical Review B, 2007, accepte

    Spin-glasses in optical cavity

    Full text link
    Recent advances in nanofabrication and optical control have garnered tremendous interest in multi-qubit-cavity systems. Here we analyze a spin-glass version of such a nanostructure, solving analytically for the phase diagrams in both the matter and radiation subsystems in the replica symmetric regime. Interestingly, the resulting phase transitions turn out to be tunable simply by varying the matter-radiation coupling strength

    UBVI Surface Photometry of the Spiral Galaxy NGC 300 in the Sculptor Group

    Full text link
    We present UBVI surface photometry for 20.'5 X 20.'5 area of a late-type spiral galaxy NGC 300. In order to understand the morphological properties and luminosity distribution characteristics of NGC 300, we have derived isophotal maps, surface brightness profiles, ellipticity profiles, position angle profiles, and color profiles. By merging the I-band data of our surface brightness measurements with those of Boeker et al. (2002) based on Hubble Space Telescope observations, we have made combined I-band surface brightness profiles for the region of 0."02 < r < 500" and decomposed the profiles into three components: a nucleus, a bulge, and an exponential disk.Comment: 16 pages(cjaa209.sty), Accepted by the Chinese J. Astron. Astrophys., Fig 2 and 8 are degraded to reduce spac

    The Protein Kinase C Inhibitor Aeb071 (Sotrastaurin) Modulates Migration and Superoxide Anion Production by Human Neutrophils In Vitro

    Get PDF
    We examined the effect of the protein kinase C-selective inhibitor AEB071 (sotrastaurin) on neutrophil functions in vitro. Pre-incubation with AEB071 at concentrations similar to those reached during in vivo therapy significantly reduced cell capacity to migrate toward three different chemo-attractants and to produce superoxide anions (O2) in response to phorbol myristate acetate (PMA) or to iV-formyl-methionyl-leucyl-phenylalanine (fMLP). AEB071 also significantly inhibited the Oāˆ’2 "overproduction induced by fMLP in neutrophils primed with tumor necrosis factor alpha (TNF-Ī±) or granulocyte/macrophage-colony stimulating factor (GM-CSF). This inhibition was not linked to fMLP-receptor down-regulation since the drug had no effect on either fMLP-receptors or fMLP-induced CD11b membrane expression. When the activity of AEB071 was compared to that of the conventional protein kinase C (PKC) inhibitor Gƶ6850 (which, like sotrastaurin, inhibits classical and novel PKC isoforms), Gƶ6976 (an inhibitor of Ī± and Ī² PKC isoforms) and rottlerin (a prevailing Ī“ PKC isoform inhibitor), AEB071 at an equimolar concentration of 3 Ī¼M (close to the maximum drug concentration reached in patients treated with AEB071) caused significantly more inhibition on both chemotactic response and superoxide production. These in vitro findings suggest that neutrophils may offer a cellular target for AEB071 activity in vivo

    Phonon structure in I-V characteristic of MgB2_{2} point-contacts

    Full text link
    The search of the phonon structure at the above-gap energies was carried out for d2V/dI2(V)d^{2}V/dI^{2}(V) spectra of MgB2_{2} point contacts with a normal metal. The two-band model is assumed not only for the gap structure in dV/dI(V)dV/dI(V)-characteristics, but also for phonons in d2V/dI2(V)d^{2}V/dI^{2}(V) point-contact spectra, with up to the maximum lattice vibration energy. Since the current is carried mostly by charges of 3D-band, whereas the strong electron-phonon interaction occurs in 2D-band, we observe the phonon peculiarities due to ''proximity'' effect in {\it k}-space, which depends on the variation of interband coupling through the elastic scattering.Comment: 6 pages, 4 figures, revtex4, reported in International Conference "Modern Problems in Superconductivity", 9-13 September, Yalta, Ukrain

    Enhancement of service life of polymer electrolyte fuel cells through application of nanodispersed ionomer

    Get PDF
    Copyright Ā© 2020 The Authors, some rights reserved.In polymer electrolyte fuel cells (PEFCs), protons from the anode are transferred to the cathode through the ionomer membrane. By impregnating the ionomer into the electrodes, proton pathways are extended and high proton transfer efficiency can be achieved. Because the impregnated ionomer mechanically binds the catalysts within the electrode, the ionomer is also called a binder. To yield good electrochemical performance, the binder should be homogeneously dispersed in the electrode and maintain stable interfaces with other catalyst components and the membrane. However, conventional binder materials do not have good dispersion properties. In this study, a facile approach based on using a supercritical fluid is introduced to prepare a homogeneous nanoscale dispersion of the binder material in aqueous alcohol. The prepared binder exhibited high dispersion characteristics, crystallinity, and proton conductivity. High performance and durability were confirmed when the binder material was applied to a PEFC cathode electrode11sciescopu

    Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption

    Get PDF
    The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity
    • ā€¦
    corecore