124 research outputs found

    Boswellic Acid Suppresses Growth and Metastasis of Human Pancreatic Tumors in an Orthotopic Nude Mouse Model through Modulation of Multiple Targets

    Get PDF
    Pancreatic cancer (PaCa) is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA), an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation). These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg) significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets

    Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer

    Get PDF
    Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”

    Transcranial Direct Current Stimulation of motor cortex enhances running performance.

    Get PDF
    Transcranial direct current stimulation (tDCS) is a technique used to modulate neuronal excitability through non-invasive brain stimulation that can enhance exercise performance. We hypothesize that tDCS would improve submaximal running time to exhaustion (TTE) and delay the increase in the rating of perceived exertion (RPE) over time. We also hypothesize that tDCS would not lead to difference in cardiorespiratory responses. We employed a randomized, single-blinded, and counterbalanced design in which 10 trained men participated. After receiving either 20 min of 1.98 mA anodal tDCS applied over the primary motor cortex (M1) or sham-operated control on separate days, participants completed a constant-load test involving running at a speed equivalent to 80% of their own maximum oxygen consumption (VO2max). During this constant-load test, RPE, heart rate (HR), VO2, pulmonary ventilation (VE), respiratory exchange ratio (RER), and ventilatory threshold (VT) were continuously monitored. TTE was recorded at the end of the test. TTEs were significantly longer in the tDCS than in the sham conditions (21.18 ± 7.13 min; 18.44 ± 6.32 min; p = 0.011). For TTE, no significant differences were found in RPE between conditions at isotime. In addition, no significant differences in HR, VO2, VE, RER, and VT were found during TTE between the two stimulation conditions at any time point. These results indicate that the application of tDCS does not induce a change of the exercise performance-related index; however, it can affect the increase of the exercise duration due to the stimuli in the M1 area

    Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells

    Get PDF
    INTRODUCTION: The expression of proinflammatory protein tissue transglutaminase 2 (TG2) is frequently upregulated in multiple cancer cell types. However, the exact role of TG2 in cancer cells is not well-understood. We recently initiated studies to determine the significance of TG2 in cancer cells and observed that sustained expression of TG2 resulted in epithelial-to-mesenchymal transition (EMT) and promoted cancer stem cell (CSC) traits in mammary epithelial cells. These results suggested that TG2 could serve as a promising therapeutic target for overcoming chemoresistance and inhibiting metastatic spread of cancer cells. METHODS: Using various mutant constructs, we analyzed the activity of TG2 that is essential for promoting the EMT-CSC phenotype. RESULTS: Our results suggest that catalytically inactive TG2 (TG2-C277S) is as effective as wild-type TG2 (TG2-WT) in inducing the EMT-CSC in mammary epithelial cells. In contrast, overexpression of a GTP-binding-deficient mutant (TG2-R580A) was completely incompetent in this regard. Moreover, TG2-dependent activation of the proinflammatory transcription factor NF-κB is deemed essential for promoting the EMT-CSC phenotype in mammary epithelial cells. CONCLUSIONS: Our results suggest that the transamidation activity of TG2 is not essential for promoting its oncogenic functions and provide a strong rationale for developing small-molecule inhibitors to block GTP-binding pockets of TG2. Such inhibitors may have great potential for inhibiting the TG2-regulated pathways, reversing drug resistance and inhibiting the metastasis of cancer cells

    NF-κB activation mechanism of 4-hydroxyhexenal via NIK/IKK and p38 MAPK pathway

    Get PDF
    Abstract4-Hydroxyhexenal (HHE) is known to affect redox balance during aging, included are vascular dysfunctions. To better understand vascular abnormality through the molecular alterations resulting from HHE accumulation in aging processes, we set out to determine whether up-regulation of mitogen-activated protein kinase (MAPK) by HHE is mediated through nuclear factor kappa B (NF-κB) activation in endothelial cells. HHE induced NF-κB activation by inhibitor of κB (IκB) phosphorylation via the IκB kinase (IKK)/NF-κB inducing kinase (NIK) pathway. HHE increased the activity of p38 MAPK and extracellular signal regulated kinase (ERK), but not c-jun NH2-terminal kinase, indicating that p38 MAPK and ERK are closely involved in HHE-induced NF-κB transactivation. Pretreatment with ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, attenuated the induction of p65 translocation, IκB phosphorylation, and NF-κB luciferase activity. These findings strongly suggest that HHE induces NF-κB activation through IKK/NIK pathway and/or p38 MAPK and ERK activation associated with oxidative stress in endothelial cells

    Cancer is a Preventable Disease that Requires Major Lifestyle Changes

    Get PDF
    This year, more than 1 million Americans and more than 10 million people worldwide are expected to be diagnosed with cancer, a disease commonly believed to be preventable. Only 5–10% of all cancer cases can be attributed to genetic defects, whereas the remaining 90–95% have their roots in the environment and lifestyle. The lifestyle factors include cigarette smoking, diet (fried foods, red meat), alcohol, sun exposure, environmental pollutants, infections, stress, obesity, and physical inactivity. The evidence indicates that of all cancer-related deaths, almost 25–30% are due to tobacco, as many as 30–35% are linked to diet, about 15–20% are due to infections, and the remaining percentage are due to other factors like radiation, stress, physical activity, environmental pollutants etc. Therefore, cancer prevention requires smoking cessation, increased ingestion of fruits and vegetables, moderate use of alcohol, caloric restriction, exercise, avoidance of direct exposure to sunlight, minimal meat consumption, use of whole grains, use of vaccinations, and regular check-ups. In this review, we present evidence that inflammation is the link between the agents/factors that cause cancer and the agents that prevent it. In addition, we provide evidence that cancer is a preventable disease that requires major lifestyle changes

    Macroscopic Arrays of Block Copolymers with Areal Densities of 10 Terbit/inch2 and Beyond

    Get PDF
    BCP self-assemble into a range of highly-ordered morphologies and by controlling the orientation and lateral ordering of the nanoscopic microdomains, numerous applications will emerge. By combining the “bottom-up” self-assembly of BCPs with “top-down” micro-fabrication processes faster, better and cheaper devices can be generated in very simple, yet robust, ways. By combining confinement effects with the highly directional field inherent in solvent evaporation and the mobility imparted to the BCP by the solvent, perfectly registered arrays of hexagonally packed BCP microdomains can be produced on surfaces at least 3x3 cm2 in area with areal densities in excess of 10 terabit/inch2. Registry of the arrays and the perfection of the ordering over macroscopic distances were demonstrated by grazing incidence small angle x-ray scattering and scanning force microscopy. Highly aligned and oriented line patterns based on BCP are also of interest, since they overcome a size limitation facing current lithographic technique. However, due to structural imperfections of BCP such as grain boundaries, dislocations, or disclinations, it has been thought that it is difficult to get the well-defined line patterns with high degree of straightness on conventional substrate. Using a saw tooth patterned substrate, a significant enhancement of degree of straightness in line patterns was obtained. However, the line patterns orient normal to the facets on the surface

    Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin

    No full text
    The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties
    corecore