16 research outputs found

    GENCODE 2021

    Get PDF
    © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.National Human Genome Research Institute of the National Institutes of Health [U41HG007234]; the content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health; Wellcome Trust [WT108749/Z/15/Z, WT200990/Z/16/Z]; European Molecular Biology Laboratory; Swiss National Science Foundation through the National Center of Competence in Research ‘RNA & Disease’ (to R.J.); Medical Faculty of the University of Bern (to R.J). Funding for open access charge: National Institutes of Health

    Functional expression of a locust tyramine receptor in murine erythroleukaemia cells

    No full text
    The LCR/MEL system (Locus Control Region/Murine Erythroleukaemia cells) was employed to express and characterize the Locusta migratoria tyramine receptor (TyrLoc), an insect G protein-coupled receptor. Functional agonist-dependent responses were recorded in stable, tyramine receptor expressing cell clones (MEL-TyrLoc). Tyramine elicited a dose-dependent increase of cytosolic Ca2+-ions and an attenuation of forskolin-induced cyclic adenosine monophosphate (AMP) production. Octopamine was shown to be a weak agonist for both responses. In addition, yohimbine proved to be a potent tyramine receptor antagonist. This study reports the first application of the LCR/MEL expression system in functional assays for G protein-coupled receptors and therefore expands the capabilities of this system by exploiting the functionality of the signal transduction pathways.status: publishe

    Stem cells versus plasticity in liver and pancreas regeneration

    No full text
    corecore