913 research outputs found

    On the semi-classical analysis of the groundstate energy of the Dirichlet Pauli operator in non-simply connected domains

    Full text link
    We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semi-classical parameter. We show, in particular, that the ground state energy of this Pauli operator will be exponentially small as the semi-classical parameter tends to zero and estimate this decay rate. This extends our results, discussing the results of a recent paper by Ekholm--Kova\v{r}\'ik--Portmann, to include also non-simply connected domains.Comment: 15 pages, 4 figure

    The effect of O2 impurities on the low temperature radial thermal expansion of bundles of closed single-walled carbon nanotubes

    Get PDF
    The effect of oxygen impurities upon the radial thermal expansion (ar) of bundles of closed single-walled carbon nanotubes has been investigated in the temperature interval 2.2-48 K by the dilatometric method. Saturation of bundles of nanotubes with oxygen caused an increase in the positive ar-values in the whole interval of temperatures used. Also, several peaks appeared in the temperature dependence ar(T) above 20 K. The low temperature desorption of oxygen from powders consisting of bundles of single-walled nanotubes with open and closed ends has been investigatedComment: 7 pages, 3 figure

    Quantum effects in the radial thermal expansion of bundles of single-walled carbon nanotubes doped with 4He

    Get PDF
    The radial thermal expansion (ar) of bundles of single-walled carbon nanotubes saturated with 4He impurities to the molar concentration 9.4% has been investigated in the interval 2.5-9.5 K using the dilatometric method. In the interval 2.1-3.7 K (ar) is negative and is several times higher than the negative (ar) for pure nanotube bundles. This most likely points to 4He atom tunneling between different positions in the nanotube bundle system. The excess expansion was reduced with decreasing 4He concentration.Comment: 4 pages, 1 figure, will be published in Fiz.Nizk Temp. #7, 201
    corecore