3 research outputs found

    Uses for virtual reality in the early stages of the product development process for modular products

    No full text
    There is an ongoing technological shift with electromobility, automation and connectivity, which affects the development of heavy vehicles such as excavators, wheel loaders and pavers. These vehicles can be referred to as cyber-physical systems (CPS). The development entails changes for companies' product development, which leads to higher complexity which is a challenge to manage. To develop heavy cyber-physical vehicles, the company uses an X-methodology in the product development process (referred to as X by confidentiality). The challenge for the company is to develop the X-methodology to combine systematic working methods where modularization and Virtual Reality (VR) are combined in early phases of product development. The purpose of this thesis was to develop the company's work processes in the early phases of product development utilizing modularization with the support of VR. This is to find improvement potential in their existing modularization methodology to achieve improved efficiency and complexity management in the product development process. To answer this, two research questions were formed: RQ1: What can modularization combined with VR be used for in early phases of product development? RQ2: How can the development of a modular cyber-physical subsystem be improved with the help of VR in the early phases of the product development process? Due to the lack of VR in the early phases of product development in the X-methodology, a literature study and a case study were conducted around a specific subsystem. The early phases of the company correspond to the literature’s Planning- and Concept Development phase. For this study, interviews, internal documents, and physical artifacts were used as empirical evidence and then compared with the found literature. In the analysis of data, it was noted that the literature's findings estimated a reduction of 50% of the product development time, a time reduction of 65% in sketch production and a 95% cost reduction for prototypes. The data found in the case study argued that lead times and costs for prototypes in scale 1:1 can be reduced with the help of virtual prototypes. The reduction in lead times was 95–97.5% of the current value, while the cost reduction was 100% for virtual prototypes in 1:1 scale compared to physical prototypes in 1:1 scale. Limited to the case study’s subsystem, it was estimated that it is possible to reduce physical location required for reviewing the subsystems, reach infinite workspace, increase visibility of the product architecture, allow more degrees of freedom for interaction with the subsystems, and infinite size scale. The study's data for research question 1 suggest that the combination between VR and modularization forms a synergic improvement of the early phases in the product development process. VR supports complexity reduction by evaluating the modularization. VR has the ability in early phases to reduce costs and time. This is achieved by working with VR early on with cross-functional feedback together with virtual models that reflects the final product. The study's data for research question 2 suggest that VR has the potential to improve the product development of modular cyber-physical systems by reducing time and costs, as well as providing access to reference architecture. With delimitation to a subsystem and its variants, it was demonstrated that VR can reduce the physical space required for prototypes and facilitate/ease visualization and interaction with the prototypes.Det pĂ„gĂ„r ett teknikskifte med elektromobilitet, automation och uppkoppling vilket pĂ„verkar utvecklingen av tunga fordon sĂ„ som grĂ€vmaskiner, hjullastare och asfaltlĂ€ggare. Dessa fordon kan benĂ€mnas som cyberfysiska system (CPS). Utvecklingen medför förĂ€ndringar för företagens produktutveckling vilket leder till högre komplexitet som Ă€r en utmaning att hantera. För att utveckla tunga cyberfysiska fordon anvĂ€nder företaget en X-metodik i produktutvecklingsprocessen (benĂ€mns X av sekretess). Utmaningen för företaget Ă€r att utveckla X-metodiken för att kombinera systematiska arbetssĂ€tt dĂ€r modularisering och Virtuell Verklighet (VR) kombineras i tidiga faser av produktutveckling. Syftet med detta examensarbete var att utveckla företagets arbetsprocesser i tidiga faser av produktutveckling gĂ€llande modularisering med stöd av VR. Detta för att finna förbĂ€ttringspotential i deras befintliga modulariseringsmetodik för att nĂ„ en förbĂ€ttrad effektivitet och komplexitetshantering i produktutvecklingsprocessen. Specifikt kommer dessa forskningsfrĂ„gor att undersökas: FF1: Vad kan modularisering kombinerat med VR anvĂ€ndas för i tidiga faser av produktutvecklingen? FF2: Hur kan utvecklingen av ett modulĂ€rt cyberfysiskt delsystem förbĂ€ttras med hjĂ€lp av VR i tidiga faser av produktutvecklingsprocessen? PĂ„ grund av avsaknaden av VR i tidiga faser av produktutvecklingen i X-metodiken genomfördes en litteraturstudie och en empirisk fallstudie kring ett avgrĂ€nsat delsystem. Företagets tidiga faser motsvarar litteraturens Planering- och Konceptutveckling-faser. Till denna studie anvĂ€ndes intervjuer, interna dokument och fysiska artefakter som empiri och jĂ€mfördes med den funna litteraturen. I analysen av all data framkom det att litteraturens fynd uppskattade en reduktion med 50% av produktutvecklingstiden, en tidreduktion med 65% i skissframtagning och 95% kostnadsreduktion för prototyper. Fallstudien menade att ledtider och kostnader för prototyper i skala 1:1 kan reduceras med hjĂ€lp av virtuella prototyper. Reduktionen av ledtider var 95–97,5% av det nuvarande vĂ€rdet, medan kostnadsreduktionen var 100% för virtuella prototyper i skala 1:1 jĂ€mfört med fysiska prototyper i skala 1:1. AvgrĂ€nsat till fallstudiens delsystem uppskattades en reducerad fysisk plats som krĂ€vs för granskning av delsystemen, oĂ€ndlig arbetsyta, ökad synlighet för produktarkitekturen, fler frihetsgrader för interaktion med delsystemen och oĂ€ndlig storleksskala. Slutsats till forskningsfrĂ„ga 1 frĂ„n studiens data var att kombinationen mellan VR och modularisering bildar en synergi för en förbĂ€ttring av tidiga faser i produktutvecklingsprocessen. VR stödjer komplexitetreduktion vid utvĂ€rdering av modularisering. VR har möjlighet i tidiga faser att reducera kostnader och tid. Vilket grundar sig att jobba tidigt med VR för tvĂ€rfunktionell feedback tillsammans med virtuella modeller som Ă„terspeglar slutprodukten. Studiens data till forskningsfrĂ„ga 2 föreslĂ„r att VR har möjligheten att förbĂ€ttra produktutvecklingen av modulĂ€ra cyberfysiska system genom att reducera tid och kostnader samt ge tillgĂ„ng till referensarkitektur. Med avgrĂ€nsning till ett delsystem och dess varianter pĂ„visades det att VR kan reducera fysiskt utrymme som krĂ€vs för prototyper och underlĂ€tta visualisering samt interaktion med dem.

    Uses for virtual reality in the early stages of the product development process for modular products

    No full text
    There is an ongoing technological shift with electromobility, automation and connectivity, which affects the development of heavy vehicles such as excavators, wheel loaders and pavers. These vehicles can be referred to as cyber-physical systems (CPS). The development entails changes for companies' product development, which leads to higher complexity which is a challenge to manage. To develop heavy cyber-physical vehicles, the company uses an X-methodology in the product development process (referred to as X by confidentiality). The challenge for the company is to develop the X-methodology to combine systematic working methods where modularization and Virtual Reality (VR) are combined in early phases of product development. The purpose of this thesis was to develop the company's work processes in the early phases of product development utilizing modularization with the support of VR. This is to find improvement potential in their existing modularization methodology to achieve improved efficiency and complexity management in the product development process. To answer this, two research questions were formed: RQ1: What can modularization combined with VR be used for in early phases of product development? RQ2: How can the development of a modular cyber-physical subsystem be improved with the help of VR in the early phases of the product development process? Due to the lack of VR in the early phases of product development in the X-methodology, a literature study and a case study were conducted around a specific subsystem. The early phases of the company correspond to the literature’s Planning- and Concept Development phase. For this study, interviews, internal documents, and physical artifacts were used as empirical evidence and then compared with the found literature. In the analysis of data, it was noted that the literature's findings estimated a reduction of 50% of the product development time, a time reduction of 65% in sketch production and a 95% cost reduction for prototypes. The data found in the case study argued that lead times and costs for prototypes in scale 1:1 can be reduced with the help of virtual prototypes. The reduction in lead times was 95–97.5% of the current value, while the cost reduction was 100% for virtual prototypes in 1:1 scale compared to physical prototypes in 1:1 scale. Limited to the case study’s subsystem, it was estimated that it is possible to reduce physical location required for reviewing the subsystems, reach infinite workspace, increase visibility of the product architecture, allow more degrees of freedom for interaction with the subsystems, and infinite size scale. The study's data for research question 1 suggest that the combination between VR and modularization forms a synergic improvement of the early phases in the product development process. VR supports complexity reduction by evaluating the modularization. VR has the ability in early phases to reduce costs and time. This is achieved by working with VR early on with cross-functional feedback together with virtual models that reflects the final product. The study's data for research question 2 suggest that VR has the potential to improve the product development of modular cyber-physical systems by reducing time and costs, as well as providing access to reference architecture. With delimitation to a subsystem and its variants, it was demonstrated that VR can reduce the physical space required for prototypes and facilitate/ease visualization and interaction with the prototypes.Det pĂ„gĂ„r ett teknikskifte med elektromobilitet, automation och uppkoppling vilket pĂ„verkar utvecklingen av tunga fordon sĂ„ som grĂ€vmaskiner, hjullastare och asfaltlĂ€ggare. Dessa fordon kan benĂ€mnas som cyberfysiska system (CPS). Utvecklingen medför förĂ€ndringar för företagens produktutveckling vilket leder till högre komplexitet som Ă€r en utmaning att hantera. För att utveckla tunga cyberfysiska fordon anvĂ€nder företaget en X-metodik i produktutvecklingsprocessen (benĂ€mns X av sekretess). Utmaningen för företaget Ă€r att utveckla X-metodiken för att kombinera systematiska arbetssĂ€tt dĂ€r modularisering och Virtuell Verklighet (VR) kombineras i tidiga faser av produktutveckling. Syftet med detta examensarbete var att utveckla företagets arbetsprocesser i tidiga faser av produktutveckling gĂ€llande modularisering med stöd av VR. Detta för att finna förbĂ€ttringspotential i deras befintliga modulariseringsmetodik för att nĂ„ en förbĂ€ttrad effektivitet och komplexitetshantering i produktutvecklingsprocessen. Specifikt kommer dessa forskningsfrĂ„gor att undersökas: FF1: Vad kan modularisering kombinerat med VR anvĂ€ndas för i tidiga faser av produktutvecklingen? FF2: Hur kan utvecklingen av ett modulĂ€rt cyberfysiskt delsystem förbĂ€ttras med hjĂ€lp av VR i tidiga faser av produktutvecklingsprocessen? PĂ„ grund av avsaknaden av VR i tidiga faser av produktutvecklingen i X-metodiken genomfördes en litteraturstudie och en empirisk fallstudie kring ett avgrĂ€nsat delsystem. Företagets tidiga faser motsvarar litteraturens Planering- och Konceptutveckling-faser. Till denna studie anvĂ€ndes intervjuer, interna dokument och fysiska artefakter som empiri och jĂ€mfördes med den funna litteraturen. I analysen av all data framkom det att litteraturens fynd uppskattade en reduktion med 50% av produktutvecklingstiden, en tidreduktion med 65% i skissframtagning och 95% kostnadsreduktion för prototyper. Fallstudien menade att ledtider och kostnader för prototyper i skala 1:1 kan reduceras med hjĂ€lp av virtuella prototyper. Reduktionen av ledtider var 95–97,5% av det nuvarande vĂ€rdet, medan kostnadsreduktionen var 100% för virtuella prototyper i skala 1:1 jĂ€mfört med fysiska prototyper i skala 1:1. AvgrĂ€nsat till fallstudiens delsystem uppskattades en reducerad fysisk plats som krĂ€vs för granskning av delsystemen, oĂ€ndlig arbetsyta, ökad synlighet för produktarkitekturen, fler frihetsgrader för interaktion med delsystemen och oĂ€ndlig storleksskala. Slutsats till forskningsfrĂ„ga 1 frĂ„n studiens data var att kombinationen mellan VR och modularisering bildar en synergi för en förbĂ€ttring av tidiga faser i produktutvecklingsprocessen. VR stödjer komplexitetreduktion vid utvĂ€rdering av modularisering. VR har möjlighet i tidiga faser att reducera kostnader och tid. Vilket grundar sig att jobba tidigt med VR för tvĂ€rfunktionell feedback tillsammans med virtuella modeller som Ă„terspeglar slutprodukten. Studiens data till forskningsfrĂ„ga 2 föreslĂ„r att VR har möjligheten att förbĂ€ttra produktutvecklingen av modulĂ€ra cyberfysiska system genom att reducera tid och kostnader samt ge tillgĂ„ng till referensarkitektur. Med avgrĂ€nsning till ett delsystem och dess varianter pĂ„visades det att VR kan reducera fysiskt utrymme som krĂ€vs för prototyper och underlĂ€tta visualisering samt interaktion med dem.

    Virtual assembly in the early stages of the product development process

    No full text
    This study has been a co-production between MĂ€lardalen university and a company to see how a project can work with Virtual Reality (VR). The purpose of the report is to help develop a method proposal for virtual assembly in VR in the early stages of the product development process at the company and to help other companies in similar situations. The aim was how the new technology shall be incorporated into a process for the company through an effective and systematic approach. To get there, it needs to develop a work method in the processes for when, how and why the technology should be used and who should use it.Therefore, three research questions (RQ:s) were formulated; RQ1: How does the process look like today regarding virtual assembly in VR at the early stages of product development? RQ2: What prerequisites must exist to be able to implement Virtual assembly at the early stages of product development? RQ3: What can be tested using virtual assembly in VR at the early stages of product development? To answer these questions, observations, interviews and a literature study from relevant articles on the subject were used. These articles were found by searching in various scientific databases with different search terms. The interviews were used to gain insight into how the company is working with VR now and what prerequisites would be needed to implement VR into the projects. In this study, direct observations in meetings, tutoring and conversations were used both in physical and virtual environments to get a deeper understanding of the company's problem. The report resulted in these conclusions:The company did not have a work method for virtual assembly with VR at the early stages. However, there were no description for virtual assembly with VR in any part of the company's product development process. If there is no work method about virtual assembly with VR in the company's product development process can these identified preconditions support; understanding the gain with VR, educated workers, the workers having an interest, having room for VR with hardware and software. These preconditions can facilitate the work, which could reduce time and save money for the project. This investigation show that a project can test seven VR variables. These variables are assembly, assembly complications, accessibility, risks, quality, visualisation and does it fit in the factory. All these variables show that VR has great protentional but how much VR can test depends on the company’s prerequisites. Finally, based on the findings in this study and in order to facilitate work with virtual assembly in VR in the early stages of product development, the report presents a prototype checklist with three steps. The data gathered in the study only comes from one company, so the proposal for further research include validation of the checklist in several industries
    corecore