2,894 research outputs found

    Rates of Performance Loss and Neuromuscular Activity in Men and Women During Cycling: Evidence for A Common Metabolic Basis of Muscle Fatigue

    Get PDF
    The durations that muscular force and power outputs can be sustained until failure fall predictably on an exponential decline between an individual’s 3-s burst maximum to the maximum performance they can sustain aerobically. The exponential time constants describing these rates of performance loss are similar across individuals, suggesting that a common metabolically based mechanism governs muscle fatigue; however, these conclusions come from studies mainly on men. To test whether the same physiological understanding can be applied to women, we compared the performance-duration relationships and neuromuscular activity between seven men [23.3 ± 1.9 (SD) yr] and seven women (21.7 ± 1.8 yr) from multiple exhaustive bouts of cycle ergometry. Each subject performed trials to obtain the peak 3-s power output (Pmax), the mechanical power at the aerobic maximum (Paer), and 11–14 constant-load bouts eliciting failure between 3 and 300 s. Collectively, men and women performed 180 exhaustive bouts spanning an ~6-fold range of power outputs (118–1116 W) and an ~35-fold range of trial durations (8–283 s). Men generated 66% greater Pmax (956 ± 109 W vs. 632 ± 74 W) and 68% greater Paer (310 ± 47 W vs. 212 ± 15 W) than women. However, the metabolically based time constants describing the time course of performance loss were similar between men (0.020 ± 0.003/s) and women (0.021 ± 0.003/s). Additionally, the fatigue-induced increases in neuromuscular activity did not differ between the sexes when compared relative to the pedal forces at Paer. These data suggest that muscle fatigue during short-duration dynamic exercise has a common metabolically based mechanism determined by the extent that ATP is resynthesized by anaerobic metabolism

    Mechanisms for the Age-related Increase in Fatigability of the Knee Extensors in Old and Very Old Adults

    Get PDF
    The mechanisms for the age-related increase in fatigability during high-velocity contractions in old and very old adults ({greater than or equal to}80 yrs) are unresolved. Moreover, whether the increased fatigability with advancing age and the underlying mechanisms differ between men and women are not known. The purpose of this study was to quantify the fatigability of knee extensor muscles and identify the mechanisms of fatigue in 30 young (22.6 {plus minus} 0.4 yrs; 15 men), 62 old (70.5 {plus minus} 0.7 yrs; 33 men), and 12 very old (86.0 {plus minus} 1.3 yrs; 6 men) men and women elicited by high-velocity concentric contractions. Participants performed 80 maximal velocity contractions (1 contraction per 3 s) with a load equivalent to 20% of the maximum voluntary isometric contraction. Voluntary activation and contractile properties were quantified before and immediately following exercise (\u3c10 \u3es) using transcranial magnetic stimulation and electrical stimulation. Absolute mechanical power output was 97% and 217% higher in the young compared to old and very old adults, respectively. Fatigability (reductions in power) progressively increased across age groups, with a power loss of 17% in young, 31% in old, and 44% in very old adults. There were no sex differences in fatigability among any of the age groups. The age-related increase in power loss was strongly associated with changes in the involuntary twitch amplitude (r=0.75,

    Effects of Elevated H\u3csup\u3e+\u3c/sup\u3e And P\u3csub\u3ei\u3c/sub\u3e on The Contractile Mechanics of Skeletal Muscle Fibres From Young and Old Men: Implications for Muscle Fatigue in Humans

    Get PDF
    The present study aimed to identify the mechanisms responsible for the loss in muscle power and increased fatigability with ageing by integrating measures of whole‐muscle function with single fibre contractile mechanics. After adjusting for the 22% smaller muscle mass in old (73–89 years, n = 6) compared to young men (20–29 years, n = 6), isometric torque and power output of the knee extensors were, respectively, 38% and 53% lower with age. Fatigability was ∼2.7‐fold greater with age and strongly associated with reductions in the electrically‐evoked contractile properties. To test whether cross‐bridge mechanisms could explain age‐related decrements in knee extensor function, we exposed myofibres (n = 254) from the vastus lateralis to conditions mimicking quiescent muscle and fatiguing levels of acidosis (H+) (pH 6.2) and inorganic phosphate (Pi) (30 mm). The fatigue‐mimicking condition caused marked reductions in force, shortening velocity and power and inhibited the low‐ to high‐force state of the cross‐bridge cycle, confirming findings from non‐human studies that these ions act synergistically to impair cross‐bridge function. Other than severe age‐related atrophy of fast fibres (−55%), contractile function and the depressive effects of the fatigue‐mimicking condition did not differ in fibres from young and old men. The selective loss of fast myosin heavy chain II muscle was strongly associated with the age‐related decrease in isometric torque (r = 0.785) and power (r = 0.861). These data suggest that the age‐related loss in muscle strength and power are primarily determined by the atrophy of fast fibres, but the age‐related increased fatigability cannot be explained by an increased sensitivity of the cross‐bridge to H+ and Pi

    Caustic formation in a non-Gaussian model for turbulent aerosols

    Full text link
    Caustics in the dynamics of heavy particles in turbulence accelerate particle collisions. The rate J\mathscr{J} at which these singularities form depends sensitively on the Stokes number St, the non-dimensional inertia parameter. Exact results for this sensitive dependence have been obtained using Gaussian statistical models for turbulent aerosols. However, direct numerical simulations of heavy particles in turbulence yield much larger caustic-formation rates than predicted by the Gaussian theory. In order to understand possible mechanisms explaining this difference, we analyse a non-Gaussian statistical model for caustic formation in the limit of small St. We show that at small St, J\mathscr{J} depends sensitively on the tails of the distribution of Lagrangian fluid-velocity gradients. This explains why different authors obtained different St-dependencies of J\mathscr{J} in numerical-simulation studies. The most-likely gradient fluctuation that induces caustics at small St, by contrast, is the same in the non-Gaussian and Gaussian models. Direct-numerical simulation results for particles in turbulence show that the optimal fluctuation is similar, but not identical, to that obtained by the model calculations.Comment: 12 pages, 3 figures, 1 tabl

    Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory

    Get PDF
    Evaluation of climate model simulations is a crucial task in climate research. Here, a new statistical framework is proposed for evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium. The framework includes two types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Each statistical model presented is developed for use with data from a single region, which can be of any size. The ideas behind the framework arose partly from a statistical model used in many detection and attribution (D&amp;A) studies. Focusing on climatological characteristics of five specific forcings of natural and anthropogenic origin, the present work theoretically motivates an extension of the statistical model used in D&amp;A studies to CFA and SEM models, which allow, for example, for non-climatic noise in observational data without assuming the additivity of the forcing effects. The application of the ideas of CFA is exemplified in a small numerical study, whose aim was to check the assumptions typically placed on ensembles of climate model simulations when constructing mean sequences. The result of this study indicated that some ensembles for some regions may not satisfy the assumptions in question.</p

    Age-related Deficits in Voluntary Activation: A Systematic Review and Meta-analysis

    Get PDF
    Whether there are age-related differences in neural drive during maximal effort contractions is not clear. This review determined the effect of age on voluntary activation during maximal voluntary isometric contractions. The literature was systematically reviewed for studies reporting voluntary activation quantified with the interpolated twitch technique (ITT) or central activation ratio (CAR) during isometric contractions in young (18–35 yr) and old adults (\u3e60 yr; mean, ≥65 yr). Of the 2697 articles identified, 54 were eligible for inclusion in the meta-analysis. Voluntary activation was assessed with electrical stimulation and transcranial magnetic stimulation on five different muscle groups. Random-effects meta-analysis revealed lower activation in old compared with young adults (d = −0.45; 95% confidence interval, −0.62 to −0.29; P \u3c 0.001), with moderate heterogeneity (52.4%). To uncover the sources of heterogeneity, subgroup analyses were conducted for muscle group, calculation method (ITT or CAR), and stimulation type (electrical stimulation or transcranial magnetic stimulation) and number (single, paired, or train stimulations). The age-related reduction in voluntary activation occurred for all muscle groups investigated except the ankle dorsiflexors. Both ITT and CAR demonstrated an age-related reduction in voluntary activation of the elbow flexors, knee extensors, and plantar flexors. ITT performed with paired and train stimulations showed lower activation for old than young adults, with no age difference for the single electrical stimulation. Together, the meta-analysis revealed that healthy older adults have a reduced capacity to activate some upper and lower limb muscles during maximal voluntary isometric contractions; however, the effect was modest and best assessed with at least paired stimulations to detect the difference

    Zeeman Anisotropy Fluorescence Spectroscopy, Characteristic Radiative Lifetimes, and Novel Site Symmetries in KCl: Sm 2+

    Get PDF
    By means of Zeeman anisotropy fluorescence (ZAF) and its field dependence (up to 55.8 kG), the authors have investigated the 4.2 K narrow-line fluorescence of KCl:Sm2+ and identified some hitherto unreported Sm2+ sites. The strong no-field line at 7693.5 Å (5D0→7F3) and a very weak no-field line at 8742.8 Å (5D0→7F5) are shown to be of C3v symmetry origin. The 24.5-kG ZAF pattern observed in the 7696-7700-Å (5D0→7F3) region has been identified to originate from a type-II Cs site. The 26.5-kG ZAF patterns of the C3v no-field line at 7693.5 Å and the type-I Cs no-field line at 7694.5 Å overlap in the 7693-7695.3-Å region, and are elucidated through the field dependence of their Zeeman components. Characteristic radiative lifetimes of the 5D0 level in several Sm2+ symmetry types have been determined from dominant transitions to the 7FJ (J\u3c~4) levels. There are two distinct C4v sites: one with a lifetime of 9.5 msec, and the other 11.2 msec. C2v and type-I Cs sites have lifetimes of 10.5 and 10.8 msec, respectively, which are indistinguishable within the experimental error. The role of O2− compensation of Sm2+ in addition to K+ vacancy compensation in KCl is discussed in terms of these findings
    corecore