106 research outputs found

    Above- and Below-ground Biomass Production in Corn and Prairie Bioenergy Cropping Systems

    Get PDF
    The Comparison of Biofuel Systems (COBS) project is a long-term, 20-acre field experiment designed to provide quantitative, side-by-side comparisons of corn- and prairie-based biofuel feedstock production systems with respect to biomass yields, liquid fuel potential, and multiple environmental impacts. Here, we report on above- and below-ground biomass production from selected treatments

    Agronomic and Economic Performance Characteristics of Conventional and Low-External-Input Cropping Systems

    Get PDF
    A 22-acre field experiment was conducted in Boone, IA, from 2003–2006 to test the hypothesis that low-external-input(LEI) cropping systems can produce yields and profits that match or exceed those obtained from conventional systems. A conventionally managed 2-year rotation system [corn (Zea mays L.)/soybean (Glycine max (L.) Merr.)] was compared with a 3-year LEI rotation system [corn/soybean/small grain + red clover (Trifolium pratense L.)], and a 4-year LEI rotation system [corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa]. Triticale (× Triticosecale Wittmack) was used as the small grain in 2003–2005; oat (Avena sativa L.) was used in 2006. Over the period of 2003– 2006, synthetic N fertilizer use was 59% and 74% lower in the 3- and 4-year systems, respectively, compared with the 2-year system. Similarly, herbicide use was reduced 76% and 82% in the 3- and 4-year systems

    Effect of substrate thermal resistance on space-domain microchannel

    Get PDF
    In recent years, Fluorescent Melting Curve Analysis (FMCA) has become an almost ubiquitous feature of commercial quantitative PCR (qPCR) thermal cyclers. Here a micro-fluidic device is presented capable of performing FMCA within a microchannel. The device consists of modular thermally conductive blocks which can sandwich a microfluidic substrate. Opposing ends of the blocks are held at differing temperatures and a linear thermal gradient is generated along the microfluidic channel. Fluorescent measurements taken from a sample as it passes along the micro-fluidic channel permits fluorescent melting curves to be generated. In this study we measure DNA melting temperature from two plasmid fragments. The effects of flow velocity and ramp-rate are investigated, and measured melting curves are compared to those acquired from a commercially available PCR thermocycler

    Case study of a performance-active changing trans* male singing voice

    Get PDF
    A professional classical singer of more than 25 years (AZ) in his early 50s requested this voice researcher’s consultation and assistance in early 2014. He was about to start living full time as a trans* man. Despite his intention to be included in the low start/gradual increase testosterone option of the Trans* Male (previously, “FTM”) Singing Voice Program, the request contained a rather unconventional aspect: AZ would continue to sing while his voice was changing. The above request was integral with his singing history. After the introduction of safeguards and his informed consent, AZ was accepted onto the Program. Due to the highly individual circumstances, his participation was recorded as a case study. The study has aimed to replicate the particulars of the slow hormonal changes and continuing singing ability found in certain cisgender male adolescent voices. Despite dealing with an adult trans* male individual, the progress has been comparable. This has been achieved by carefully monitoring AZ’s low start/gradual increase testosterone administration in communication with the medical practitioner. The participant’s vocal health remained safeguarded and promoted by carefully individualized vocal tuition. This article will discuss the collective results of the case study, including the recordings and the data analysis

    MESSENGER Observations of Dipolarization Events in Mercury's Magnetotail

    Get PDF
    Several series of large dipolarization events are documented from magnetic field observations in Mercury's magnetotail made by the MESSENGER spacecraft. The dipolarizations are identified by a rapid (∼1 s) increase in the northward component of the magnetic field, followed by a slower return (∼10 s) to pre-onset values. The changes in field strength during an event frequently reach 40 nT or higher, equivalent to an increase in the total magnetic field magnitude by a factor of ∼4 or more. The presence of spatially constrained dipolarizations at Mercury provides a key to understanding the magnetic substorm process in a new parameter regime: the dipolarization timescale, which is shorter than at Earth, is suspected to lead to efficient non-adiabatic heating of the plasma sheet proton population, and the high recurrence rate of the structures is similar to that frequently observed for flux ropes and traveling compression regions in Mercury's magnetotail. The relatively short lifetime of the events is attributed to the lack of steady field-aligned current systems at Mercury

    Mouse models for pseudoxanthoma elasticum: Genetic and dietary modulation of the ectopic mineralization phenotypes

    Get PDF
    Pseudoxanthoma elasticum (PXE), a heritable ectopic mineralization disorder, is caused by mutations in the ABCC6 gene. Null mice ( Abcc6 -/-) recapitulate the genetic, histopathologic and ultrastructural features of PXE, and they demonstrate early and progressive mineralization of vibrissae dermal sheath, which serves as a biomarker of the overall mineralization process. Recently, as part of a mouse aging study at The Jackson Laboratory, 31 inbred mouse strains were necropsied, and two of them, KK/HlJ and 129S1/SvImJ, were noted to have vibrissae dermal mineralization similar to Abcc6-/- mice. These two strains were shown to harbor a single nucleotide polymorphism (rs32756904) in the Abcc6 gene, which resulted in out-of-frame splicing and marked reduction in ABCC6 protein expression in the liver of these mice. The same polymorphism is present in two additional mouse strains, DBA/2J and C3H/HeJ, with similar reduction in Abcc6 protein levels, yet these mice did not demonstrate tissue mineralization when kept on standard rodent diet. However, all four mouse strains, when placed on experimental diet enriched in phosphate and low in magnesium, developed extensive ectopic mineralization. These results indicate that the genetic background of mice and the mineral composition of their diet can profoundly modulate the ectopic mineralization process predicated on mutations in the Abcc6 gene. These mice provide novel model systems to study the pathomechanisms and the reasons for strain background on phenotypic variability of PXE. © 2014 Li et al

    Uphold the nuclear weapons test moratorium

    Get PDF
    The Trump administration is considering renewing nuclear weapons testing (1), a move that could increase the risk of another nuclear arms race as well as an inadvertent or intentional nuclear war. Following in the long tradition of scientists opposing nuclear weapons due to their harmful effects on both humanity and the planet (2), we ask the U.S. government to desist from plans to conduct nuclear tests. During the Cold War, the United States conducted 1030 nuclear weapons tests, more than all other nuclear-armed nations combined (3). In 1996, the United States signed the Comprehensive Nuclear Test Ban Treaty (CTBT), agreeing not to conduct a nuclear weapons test of any yield (4). The United States has not yet ratified the CTBT but did spearhead the 2016 adoption of UN Security Council Resolution 2310, which calls upon all countries to uphold the object and purpose of the CTBT by not conducting nuclear tests (5). Eight of the nine nuclear-armed states, including the five permanent members of the UN Security Council, have observed a moratorium on nuclear testing since 1998 (3, 4). The ninth, North Korea, responding to international pressure, stopped testing warhead detonations (as opposed to missile flights) in 2017 (6). If the United States ratified the CTBT, joining the 168 countries who have already done so (4), there is a good chance that the other holdout countries would ratify the treaty as well (7)

    Uphold the nuclear weapons test moratorium

    Get PDF
    The Trump administration is considering renewing nuclear weapons testing (1), a move that could increase the risk of another nuclear arms race as well as an inadvertent or intentional nuclear war. Following in the long tradition of scientists opposing nuclear weapons due to their harmful effects on both humanity and the planet (2), we ask the U.S. government to desist from plans to conduct nuclear tests. During the Cold War, the United States conducted 1030 nuclear weapons tests, more than all other nuclear-armed nations combined (3). In 1996, the United States signed the Comprehensive Nuclear Test Ban Treaty (CTBT), agreeing not to conduct a nuclear weapons test of any yield (4). The United States has not yet ratified the CTBT but did spearhead the 2016 adoption of UN Security Council Resolution 2310, which calls upon all countries to uphold the object and purpose of the CTBT by not conducting nuclear tests (5). Eight of the nine nuclear-armed states, including the five permanent members of the UN Security Council, have observed a moratorium on nuclear testing since 1998 (3, 4). The ninth, North Korea, responding to international pressure, stopped testing warhead detonations (as opposed to missile flights) in 2017 (6). If the United States ratified the CTBT, joining the 168 countries who have already done so (4), there is a good chance that the other holdout countries would ratify the treaty as well (7)

    Addressing the dichotomy between individual and societal approaches to personalised medicine in oncology

    Get PDF
    Academic, industry, regulatory leaders and patient advocates in cancer clinical research met in November 2018 at the Innovation and Biomarkers in Cancer Drug Development meeting in Brussels to address the existing dichotomy between increasing calls for personalised oncology approaches based on individual molecular profiles and the need to make resource and regulatory decisions at the societal level in differing health-care delivery systems around the globe. Novel clinical trial designs, the utility and limitations of real-world evidence (RWE) and emerging technologies for profiling patient tumours and tumour-derived DNA in plasma were discussed. While randomised clinical trials remain the gold standard approach to defining clinical utility of local and systemic therapeutic interventions, the broader adoption of comprehensive tumour profiling and novel trial designs coupled with RWE may allow patient and physician autonomy to be appropriately balanced with broader assessments of safety and overall societal benefit. (C) 2019 Published by Elsevier Ltd
    corecore