134 research outputs found

    Physiological and biochemical changes in desiccation sensitive curry leaf (Murraya koenigii (L.) Sprengel) seeds

    Get PDF
    Curry leaf (Murraya koenigii (L.) Sprengel) is an important spice tree propagated by seeds. However, the seeds are sensitive to desiccation and considered as recalcitrant. Therefore, an experiment was conducted to analyze its level of desiccation and changes takes place during water loss. The results indicated that the reduction in seed moisture from 47.4 per cent leads to loss in viability. In which, the initial seed germination (100 %) declines slowly during desiccation and at the seed moisture content of 33.1 per cent it recorded 69 per cent germination at six days of exposure under ambient temperature (30±20C). Further moisture loss leads to drastic reduction in germination and hence, this could be the critical or lowest safe moisture content. In addition, the reduction in seedling vigour and enzymatic activity and increase in seed leachate were noticed during desiccation of the curry leaf seeds

    Correlation and R2 analysis of radicle emergence test to predict seed vigour and field emergence in blackgram (Vigna mungo L.) seed lots

    Get PDF
    Blackgram (Vigna mungo L.) is one of the major pulse crops grown throughout India.  Prediction of seed vigour and field emergence of seed before sowing is important for assured yield. A standard germination test is time-consuming and does not always show the seed lot potential performance, especially if field conditions are not optimal. There is need of advanced technology, which can give a precise result in a short period. The experiment was conducted to correlate the radicle emergence test with seed vigour parameters to predict seed vigour and planting value of 10 varying vigour lots (L1, L2, L3, L4 - high vigour lots; L5, L6, L7 - medium vigour lots; L8, L9, L10 - low vigour lots) of blackgram var. VBN 6. The study showed that all the seed vigour parameters of the blackgram were more highly correlated with the percentage of radicle emergence with 2 mm length than with 1 mm length. The correlation analysis results showed that the radicle emergence test with 2 mm radicle length at 28 hours had a highly significant negative correlation with EC (electrical conductivity) of seed leachate (-0.974**), followed by MJGT (mean just germination time) (-0.967**) and MGT (mean germination time) (-0.933**). However, it was positively correlated with field emergence (0.972**), germination (0.952**) and dehydrogenase enzyme activity (0.928**). The maximum R2 value of 0.923 was recorded in the 28-hour counting of radicle emergence with a length of 2 mm compared with the 26-hour counting of radicle emergence with a length of 1 mm (0.913). The study concluded that counting 2 mm radicle emergence at the 28th hour could be used to quickly evaluate seed vigour in field emergence in blackgram seed lots

    Radicle emergence test as a quick vigour test to predict field emergence performance in rice (Oryza sativa L.) seed lots

    Get PDF
    An experiment was made to standardize the radicle emergence test to predict the field emergence performance in ten different seed lots [L1 to L4: high vigour lots (> 90 % germination), L5 to L7: medium vigour lots (80-90 % germination) and L8 to L10: low vigour lots (< 80 % germination)] of rice cv. CO 51. The results showed that the significant differences are observed in physiological and biochemical parameters in different seed lots. The seed vigour was classified into three groups viz., high, medium and low vigour based on the relationship between mean germination time and field emergence. When the Mean Germination Time (MGT) was < 34 hours, the field emergence was > 85 per cent, which was considered as high vigour; when the MGT was 34-35 hours, the field emergence was 80-85 per cent, that was considered as medium vigour; when the MGT was > 35 hours, the field emergence was < 80 per cent, that was considered as low vigour. The radicle emergence test (2mm radicle length) was highly negatively correlated with mean germination time (-0.930**) followed by mean just germination time (-0.852**) and electrical conductivity of seed leachate (-0.827**) and it was positively correlated with field emergence (0.894**) followed by germination (0.878**) and dehydrogenase activity (0.864**). The R2 values between seed vigour parameters and radicle emergence test were significantly higher in 2mm length of radicle emergence when compared with 1mm length of radicle emergence. Finally, the study concluded that 36 hour MGT with the attainment of 2mm radicle emergence percentage could be used as a quick method to assess rice seed lots' quality by the seed analysts and seed industry

    Role of nitric oxide in seed biology and seed production: A review

    Get PDF
    Nitric oxide (NO) is an important signalling molecule employed by plants to control many physiological aspects. This review summarizes that crosstalk between NO/H2O2/Ca2+ signalling pathways that drive pollen tube for sexual reproduction in flowering plants. NO is produced in seeds by both enzymatic and non-enzymatic sources that control many physiological aspects of seeds. The interplay of NO and Reactive oxygen species are likely important players in hormonal crosstalk controlling seed germination and dormancy. Mechanism of seed germination and dormancy is mainly regulated by plant hormones like Abscisic acid (ABA) and Gibberellic acid (GA). Based on mode of action of NO with reference to triggering the germination of crop seeds under abiotic stress condition it is infer that there is a linkage between NO and plant growth regulator production. NO cross-talk with reactive oxygen species (ROS) during abiotic stress condition, modulate the light and hormone depended developmental process in the early stage of plant development. NO action to enhancing abiotic stress tolerance by improving antioxidant enzymes and protection against oxidative damage in many crops are discussed in detail

    Aquaporins and their implications on seeds: A brief review

    Get PDF
    Aquaporins (AQPs) are water channel proteins. They play a key role in maintaining water balance and homeostasis in cells under stress conditions in living organisms. AQPs are pore forming transmembrane proteins that facilitate water movement and various small neutral solutes across cellular membranes. Aquaporin expression and transport functions are modulated by various phytohormones mediated signalling in plants. Transcriptome analysis revealed the role of aquaporins in regulating hydraulic conductance in plant roots and leaves. Different AQPs found in the seed system have individual functions that are more time and tissue specific, ultimately helping in the seed imbibition process to complete seed germination. Seed specific TIP3s aquaporin helps to maintain seed longevity under expressional control of ABI3 during seed maturation and heat shock proteins and late embryogenic abundant proteins. Under stress circumstances, the major significance of aquaporin expression in seeds is to maintain water influx and efflux rates, as well as protein modification, post translational alterations, nutritional acquisition and allocation, subcellular trafficking and CO2 transport. The present review mainly focused on aquaporin structure, classification, role and functional activity during solute transport, reproductive organs development, plant growth development, abiotic stress response and also various roles in seeds such as seed biology, seed development and maturation, seed dormancy, seed germination and longevity

    Volatile organic compound analysis as advanced technology to detect seed quality in groundnut

    Get PDF
    An experiment was conducted to profiling the volatile organic compounds emitted from groundnut seeds during storage and also to assess the volatiles emission level during seed deterioration. Volatile organic compounds profiling of stored groundnut seeds was done through GC-MS at monthly intervals. The results showed that several volatile compounds were released from stored groundnut seeds and all the compounds are falling into eight major groups viz., alcohols, aldehydes, acids, esters, alkanes, alkenes, ketones and ethers. The study clearly demonstrated the influence of volatile organic compounds emission level on physiological and biochemical properties during storage. There was a significant decrease in physiological and biochemical quality attributes noted due to an increase in the strength of volatiles released during ageing. When the release of total volatile strength reached more than 50%, a significant reduction in physiological attributes such as germination, root and shoot length, dry matter production and vigour index were observed. With respect to biochemical properties, a significant increase in electrical conductivity of seed leachate, lipid peroxidation and lipoxygenase activity, and a decrease in dehydrogenase, catalase and peroxidase activities were observed. However, the highest reduction in all these properties was recorded when the total volatile strength reached 92.72%. The study concluded that the volatiles released during seed deterioration could be considered the signature components for detecting the seed quality during storage

    Assessment of rice (Co 51) seed ageing through volatile organic compound analysis using Headspace-Solid Phase Micro Extraction/ Gas Chromatography-Mass Spectrometry (HS-SPME/GCMS)

    Get PDF
    Seed ageing is an inevitable process that reduces seed quality during storage. When seeds deteriorate as a result of the lipid peroxidation process, it leads to produce toxic volatile organic compounds. These volatiles served as an indicator for the viability of stored seeds. With this background, the study was conducted to profile the volatile organic compounds emitted from rice seeds during storage. Volatile profiling of stored rice var. Co 51 seeds was done through Headspace-Solid phase microextraction/ Gas chromatography-mass spectrometry (HS-SPME/GCMS). The study clearly demonstrated that the significant decrease in physiological and biochemical quality attributes was noted due to an increase in the strength of volatiles released during ageing. When the release of total volatile strength reached more than 40%, a significant reduction in physiological attributes such as germination, root and shoot length, dry matter production and vigour index were observed. With respect to biochemical properties, a significant increase in electrical conductivity of seed leachate, lipid peroxidation and lipoxygenase activity, and decrease in dehydrogenase, catalase and peroxidase activities were observed. However, the highest reduction in all these properties were recorded when the total volatile strength reached to 54.90%. Finally, the study concluded that, among all the volatiles, 1-hexanol, 1-butanol, ethanol, hexanal, acetic acid, hexanoic acid and methyl ester were the most closely associated volatiles with seed deterioration. It indicates that these components could be considered the signature components for assessing the seed quality in rice during storage.

    Outcomes of Adult Patients with Small Body Size Supported with a Continuous-Flow Left Ventricular Assist Device

    Get PDF
    There is insufficient data on patients with small body size to determine if this should be considered a risk factor for continuous-flow left ventricular assist device (CF-LVAD) support. We sought to evaluate survival outcomes, adverse events, and functional status of CF-LVAD patients with body surface area (BSA) <1.5 m2 in a large national registry. Adults with BSA < 1.5 m2 (n = 128) implanted with a HeartMate II (HMII)-LVAD from the Interagency Registry for Mechanically Assisted Circulatory Support registry from April 2008 to December 2012 formed this cohort. Outcomes were compared with HMII bridge to transplant (BTT) and destination therapy (DT) post approval studies. The majority of patients were female (n = 106, 83%). A total of 64% (n = 82) were implanted for BTT and 36% (n = 46) for DT. The median BSA (range) was 1.44 (1.19–1.49) and 1.45 (1.25–1.49) m2 for BTT and DT, respectively. Overall survival 1 year post implant was 81% ± 5% for BTT and 84% ± 6% for DT. The most common adverse events for BTT and DT patients were bleeding (0.91, 0.88 events/patient year) and driveline infection (16%, 0.28 events/patient year). Six months post implantation, 87% of BTT and 77% of DT patients were New York Heart Association functional class I or II. Post implant survival, functional status improvement, and adverse event profile for adult BTT and DT HMII patients with BSA < 1.5 m2 are favorable and comparable with outcomes published in the overall patient population

    Correction of Pulmonary Arteriovenous Malformation Using Image-Based Surgical Planning

    Get PDF
    The objectives of this study were to develop an image-based surgical planning framework that 1) allows for in-depth analysis of pre-operative hemodynamics by the use of cardiac magnetic resonance and 2) enables surgeons to determine the optimum surgical scenarios before the operation. This framework is tailored for applications in which post-operative hemodynamics are important. In particular, it is exemplified here for a Fontan patient with severe left pulmonary arteriovenous malformations due to abnormal hepatic flow distribution to the lungs. Patients first undergo cardiac magnetic resonance for 3-dimensional anatomy and flow reconstruction. After analysis of the pre-operative flow fields, the 3-dimensional anatomy is imported into an interactive surgical planning interface for the surgeon to virtually perform multiple surgical scenarios. Associated hemodynamics are predicted by the use of a fully validated computational fluid dynamic solver. Finally, efficiency metrics (e.g., pressure decrease and hepatic flow distribution) are weighted against surgical feasibility to determine the optimal surgical option

    Predicting Survival in Patients Receiving Continuous Flow Left Ventricular Assist Devices The HeartMate II Risk Score

    Get PDF
    ObjectivesThe aim of this study was to derive and validate a model to predict survival in candidates for HeartMate II (HMII) (Thoratec, Pleasanton, California) left ventricular assist device (LVAD) support.BackgroundLVAD mortality risk prediction is important for candidate selection and communicating expectations to patients and clinicians. With the evolution of LVAD support, prior risk prediction models have become less valid.MethodsPatients enrolled into the HMII bridge to transplantation and destination therapy trials (N = 1,122) were randomly divided into derivation (DC) (n = 583) and validation cohorts (VC) (n = 539). Pre-operative candidate predictors of 90-day mortality were examined in the DC with logistic regression, from which the HMII Risk Score (HMRS) was derived. The HMRS was then applied to the VC.ResultsThere were 149 (13%) deaths within 90 days. In the DC, mortality (n = 80) was higher in older patients (odds ratio [OR]: 1.3, 95% confidence interval [CI]: 1.1 to 1.7 per 10 years), those with greater hypoalbuminemia (OR: 0.49, 95% CI: 0.31 to 0.76 per mg/dl of albumin), renal dysfunction (OR: 2.1, 95% CI: 1.4 to 3.2 per mg/dl creatinine), coagulopathy (OR: 3.1, 95% CI: 1.7 to 5.8 per international normalized ratio unit), and in those receiving LVAD support at less experienced centers (OR: 2.2, 95% CI: 1.2 to 4.4 for <15 trial patients). Mortality in the DC low, medium, and high HMRS groups was 4%, 16%, and 29%, respectively (p < 0.001). In the VC, corresponding mortality was 8%, 11%, and 25%, respectively (p < 0.001). HMRS discrimination was good (area under the receiver-operating characteristic curve: 0.71, 95% CI: 0.66 to 0.75).ConclusionsThe HMRS might be useful for mortality risk stratification in HMII candidates and may serve as an additional tool in the patient selection process
    • …
    corecore