56 research outputs found

    Global Superdiffusion of Weak Chaos

    Full text link
    A class of kicked rotors is introduced, exhibiting accelerator-mode islands (AIs) and {\em global} superdiffusion for {\em arbitrarily weak} chaos. The corresponding standard maps are shown to be exactly related to generalized web maps taken modulo an ``oblique cylinder''. Then, in a case that the web-map orbit structure is periodic in the phase plane, the AIs are essentially {\em normal} web islands folded back into the cylinder. As a consequence, chaotic orbits sticking around the AI boundary are accelerated {\em only} when they traverse tiny {\em ``acceleration spots''}. This leads to chaotic flights having a quasiregular {\em steplike} structure. The global weak-chaos superdiffusion is thus basically different in nature from the strong-chaos one in the usual standard and web maps.Comment: REVTEX, 4 Figures: fig1.jpg, fig2.ps, fig3.ps, fig4.p

    Maternal Diet Quality During Pregnancy and Offspring Hepatic Fat in Early Childhood: The Healthy Start Study

    Get PDF
    Background: Overnutrition in utero may increase offspring risk of nonalcoholic fatty liver disease (NAFLD), but the specific contribution of maternal diet quality during pregnancy to this association remains understudied in humans. Objectives: This study aimed to examine the associations of maternal diet quality during pregnancy with offspring hepatic fat in early childhood (median: 5 y old, range: 4–8 y old). Methods: Data were from 278 mother–child pairs in the longitudinal, Colorado-based Healthy Start Study. Multiple 24-h recalls were collected from mothers during pregnancy on a monthly basis (median: 3 recalls, range: 1–8 recalls starting after enrollment), and used to estimate maternal usual nutrient intakes and dietary pattern scores [Healthy Eating Index-2010 (HEI-2010), Dietary Inflammatory Index (DII), and Relative Mediterranean Diet Score (rMED)]. Offspring hepatic fat was measured in early childhood by MRI. Associations of maternal dietary predictors during pregnancy with offspring log-transformed hepatic fat were assessed using linear regression models adjusted for offspring demographics, maternal/perinatal confounders, and maternal total energy intake. Results: Higher maternal fiber intake and rMED scores during pregnancy were associated with lower offspring hepatic fat in early childhood in fully adjusted models [Back-transformed β (95% CI): 0.82 (0.72, 0.94) per 5 g/1000 kcal fiber; 0.93 (0.88, 0.99) per 1 SD for rMED]. In contrast, higher maternal total sugar and added sugar intakes, and DII scores were associated with higher offspring hepatic fat [Back-transformed β (95% CI): 1.18 (1.05, 1.32) per 5% kcal/d added sugar; 1.08 (0.99, 1.18) per 1 SD for DII]. Analyses of dietary pattern subcomponents also revealed that lower maternal intakes of green vegetables and legumes and higher intake of “empty calories” were associated with higher offspring hepatic fat in early childhood. Conclusions: Poorer maternal diet quality during pregnancy was associated with greater offspring susceptibility to hepatic fat in early childhood. Our findings provide insights into potential perinatal targets for the primordial prevention of pediatric NAFLD

    Locating Photography

    Get PDF
    The specter of global dissemination haunted photography from its very beginning. This chapter explains two aspects of photography's “globalization”: its use as a “western” technique to document an increasingly colonized world and its dissemination around the world and its adoption by local practitioners. In rural and small‐town central India, the studio retains a central place in most people's encounters with photography. Martín Chambi would retain a lifelong adherence to the purity of the photographic image but other indigenista photographers, such as Juan Manuel Figueroa Aznar, would increasingly use paint alongside photography. A World System Photography, seen in networks that fold locally articulated practices into trajectories that fuse technics, history, and culture, can help people think in new ways about the “location” of photography. Locations have to be re‐imagined as “Terra Infirma”, unstable and complex positions which may have more of the quality of linking sections of a network than of territories

    Assessment of Radiologist Performance in the Detection of Lung Nodules

    Get PDF
    RATIONALE AND OBJECTIVES: Studies that evaluate the lung-nodule-detection performance of radiologists or computerized methods depend on an initial inventory of the nodules within the thoracic images (the “truth”). The purpose of this study was to analyze (1) variability in the “truth” defined by different combinations of experienced thoracic radiologists and (2) variability in the performance of other experienced thoracic radiologists based on these definitions of “truth” in the context of lung nodule detection on computed tomography (CT) scans. MATERIALS AND METHODS: Twenty-five thoracic CT scans were reviewed by four thoracic radiologists, who independently marked lesions they considered to be nodules ≥ 3 mm in maximum diameter. Panel “truth” sets of nodules then were derived from the nodules marked by different combinations of two and three of these four radiologists. The nodule-detection performance of the other radiologists was evaluated based on these panel “truth” sets. RESULTS: The number of “true” nodules in the different panel “truth” sets ranged from 15–89 (mean: 49.8±25.6). The mean radiologist nodule-detection sensitivities across radiologists and panel “truth” sets for different panel “truth” conditions ranged from 51.0–83.2%; mean false-positive rates ranged from 0.33–1.39 per case. CONCLUSION: Substantial variability exists across radiologists in the task of lung nodule identification in CT scans. The definition of “truth” on which lung nodule detection studies are based must be carefully considered, since even experienced thoracic radiologists may not perform well when measured against the “truth” established by other experienced thoracic radiologists

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore