669 research outputs found

    Temporal and technical variability of human gut metagenomes

    Get PDF
    BACKGROUND: Metagenomics has become a prominent approach for exploring the role of the gut microbiota in human health. However, the temporal variability of the healthy gut microbiome has not yet been studied in depth using metagenomics and little is known about the effects of different sampling and preservation approaches. We performed metagenomic analysis on fecal samples from seven subjects collected over a period of up to two years to investigate temporal variability and assess preservation-induced variation, specifically, fresh frozen compared to RNALater. We also monitored short-term disturbances caused by antibiotic treatment and bowel cleansing in one subject. RESULTS: We find that the human gut microbiome is temporally stable and highly personalized at both taxonomic and functional levels. Over multiple time points, samples from the same subject clustered together, even in the context of a large dataset of 888 European and American fecal metagenomes. One exception was observed in an antibiotic intervention case where, more than one year after the treatment, samples did not resemble the pre-treatment state. Clustering was not affected by the preservation method. No species differed significantly in abundance, and only 0.36% of gene families were differentially abundant between preservation methods. CONCLUSIONS: Technical variability is small compared to the temporal variability of an unperturbed gut microbiome, which in turn is much smaller than the observed between-subject variability. Thus, short-term preservation of fecal samples in RNALater is an appropriate and cost-effective alternative to freezing of fecal samples for metagenomic studies

    MOCAT2: a metagenomic assembly, annotation and profiling framework

    Get PDF
    MOCAT2 is a software pipeline for metagenomic sequence assembly and gene prediction with novel features for taxonomic and functional abundance profiling. The automated generation and efficient annotation of non-redundant reference catalogs by propagating pre-computed assignments from 18 databases covering various functional categories allows for fast and comprehensive functional characterization of metagenomes. Availability and Implementation: MOCAT2 is implemented in Perl 5 and Python 2.7, designed for 64-bit UNIX systems and offers support for high-performance computer usage via LSF, PBS or SGE queuing systems; source code is freely available under the GPL3 license at http://mocat.embl.de. Contact: [email protected]

    Non-Markovian polymer reaction kinetics

    Full text link
    Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times significantly shorter than predicted by the existing classical Markovian theory.Comment: Main text (7 pages, 5 figures) + Supplemantary Information (13 pages, 2 figures

    Sympathetic stimulation produces a greater increase in both transmural and spatial dispersion of repolarization in LQT1 than LQT2 forms of congenital long QT syndrome

    Get PDF
    AbstractOBJECTIVESThe study compared the influence of sympathetic stimulation on transmural and spatial dispersion of repolarization between LQT1 and LQT2 forms of congenital long QT syndrome (LQTS).BACKGROUNDCardiac events are more associated with sympathetic stimulation in LQT1 than in LQT2 or LQT3 syndrome. Experimental studies have suggested that the interval between Tpeak and Tend (Tp-e) in the electrocardiogram (ECG) reflects transmural dispersion of repolarization across the ventricular wall.METHODSWe recorded 87-lead body-surface ECGs before and after epinephrine infusion (0.1 μg/kg/min) in 13 LQT1, 6 LQT2, and 7 control patients. The Q-Tend (QT-e), Q-Tpeak (QT-p), and Tp-e were measured automatically from 87-lead ECGs, corrected by Bazett’s method (QTc-e, QTc-p, Tcp-e), and averaged among all 87-leads and among 24-leads, which reflect the potential from the left ventricular free wall. As an index of spatial dispersion of repolarization, the dispersion of QTc-e (QTc-eD) and QTc-p (QTc-pD) were obtained among 87-leads and among 24-leads, and were defined as the interval between the maximum and the minimum of the QTc-e and the QTc-p, respectively.RESULTSEpinephrine significantly increased the mean QTc-e but not the mean QTc-p, resulting in a significant increase in the mean Tcp-e in both LQT1 and LQT2, but not in control patients. The epinephrine-induced increases in the mean QTc-e and Tcp-e were larger in LQT1 than in LQT2, and were more pronounced when the averaged data were obtained from 24-leads than from 87-leads. Epinephrine increased the maximum QTc-e but not the minimum QTc-e, producing a significant increase in the QTc-eD in both LQT1 and LQT2 patients, but not in control patients. The increase in the QTc-eD was larger in LQT1 than in LQT2 patients.CONCLUSIONSOur data suggest that sympathetic stimulation produces a greater increase in both transmural and spatial dispersion of repolarization in LQT1 than in LQT2 syndrome, and this may explain why LQT1 patients are more sensitive to sympathetic stimulation

    proGenomes2: an improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes

    Get PDF
    Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/

    Differential effects of beta-blockade on dispersion of repolarization in the absence and presence of sympathetic stimulation between the lqt1 and lqt2 forms of congenital long qt syndrome

    Get PDF
    AbstractObjectivesThis study compared the effects of beta-blockade on transmural and spatial dispersion of repolarization (TDR and SDR, respectively) between the LQT1 and LQT2 forms of congenital long QT syndrome (LQTS).BackgroundThe LQT1 form is more sensitive to sympathetic stimulation and more responsive to beta-blockers than either the LQT2 or LQT3 forms.MethodsEighty-seven-lead, body-surface electrocardiograms (ECGs) were recorded before and after epinephrine infusion (0.1 μg/kg body weight per min) in the absence and presence of oral propranolol (0.5–2.0 mg/kg per day) in 11 LQT1 patients and 11 LQT2 patients. The Q-Tendinterval, the Q-Tpeakinterval and the interval between Tpeakand Tend(Tp-e), representing TDR, were measured and averaged from 87-lead ECGs and corrected by Bazett’s method (corrected Q-Tendinterval [cQTe], corrected Q-Tpeakinterval [cQTp] and corrected interval between Tpeakand Tend[cTp-e]). The dispersion of cQTe(cQTe-D) was obtained among 87 leads and was defined as the interval between the maximum and minimum values of cQTe.ResultsPropranolol in the absence of epinephrine significantly prolonged the mean cQTpvalue but not the mean cQTevalue, thus decreasing the mean cTp-evalue in both LQT1 and LQT2 patients; the differences with propranolol were significantly larger in LQT1 than in LQT2 (p < 0.05). The maximum cQTe, minimum cQTeand cQTe-D were not changed with propranolol. Propranolol completely suppressed the influence of epinephrine in prolonging the mean cQTe, maximum cQTeand minimum cQTevalues, as well as increasing the mean cTp-eand cQTe-D values in both groups.ConclusionsBeta-blockade under normal sympathetic tone produces a greater decrease in TDR in the LQT1 form than in the LQT2 form, explaining the superior effectiveness of beta-blockers in LQT1 versus LQT2. Beta-blockers also suppress the influence of sympathetic stimulation in increasing TDR and SDR equally in LQT1 and LQT2 syndrome

    Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes

    Get PDF
    Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts

    Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    Get PDF
    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3?25?seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2?N and 6?N, and two levels of velocity, 9.4?mm/s and 65?mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension

    Subspecies in the global human gut microbiome

    Get PDF
    Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large-scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture-independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72% of the total assigned microbial abundance, single-nucleotide variation clearly indicates the existence of sub-populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies-specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro-inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host

    Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments

    Get PDF
    BACKGROUND: Taxonomic profiling is a fundamental task in microbiome research that aims to detect and quantify the relative abundance of microorganisms in biological samples. Available methods using shotgun metagenomic data generally depend on the deposition of sequenced and taxonomically annotated genomes, usually from cultures of isolated strains, in reference databases (reference genomes). However, the majority of microorganisms have not been cultured yet. Thus, a substantial fraction of microbial community members remains unaccounted for during taxonomic profiling, particularly in samples from underexplored environments. To address this issue, we developed the mOTU profiler, a tool that enables reference genome-independent species-level profiling of metagenomes. As such, it supports the identification and quantification of both "known" and "unknown" species based on a set of select marker genes. RESULTS: We present mOTUs3, a command line tool that enables the profiling of metagenomes for >33,000 species-level operational taxonomic units. To achieve this, we leveraged the reconstruction of >600,000 draft genomes, most of which are metagenome-assembled genomes (MAGs), from diverse microbiomes, including soil, freshwater systems, and the gastrointestinal tract of ruminants and other animals, which we found to be underrepresented by reference genomes. Overall, two thirds of all species-level taxa lacked a reference genome. The cumulative relative abundance of these newly included taxa was low in well-studied microbiomes, such as the human body sites (6-11%). By contrast, they accounted for substantial proportions (ocean, freshwater, soil: 43-63%) or even the majority (pig, fish, cattle: 60-80%) of the relative abundance across diverse non-human-associated microbiomes. Using community-developed benchmarks and datasets, we found mOTUs3 to be more accurate than other methods and to be more congruent with 16S rRNA gene-based methods for taxonomic profiling. Furthermore, we demonstrate that mOTUs3 increases the resolution of well-known microbial groups into species-level taxa and helps identify new differentially abundant taxa in comparative metagenomic studies. CONCLUSIONS: We developed mOTUs3 to enable accurate species-level profiling of metagenomes. Compared to other methods, it provides a more comprehensive view of prokaryotic community diversity, in particular for currently underexplored microbiomes. To facilitate comparative analyses by the research community, it is released with >11,000 precomputed profiles for publicly available metagenomes and is freely available at: https://github.com/motu-tool/mOTUs . Video Abstract
    • …
    corecore