63,837 research outputs found
Generalized linear isotherm regularity equation of state applied to metals
A three-parameter equation of state (EOS) without physically incorrect
oscillations is proposed based on the generalized Lennard-Jones (GLJ) potential
and the approach in developing linear isotherm regularity (LIR) EOS of Parsafar
and Mason [J. Phys. Chem., 1994, 49, 3049]. The proposed (GLIR) EOS can include
the LIR EOS therein as a special case. The three-parameter GLIR, Parsafar and
Mason (PM) [Phys. Rev. B, 1994, 49, 3049], Shanker, Singh and Kushwah (SSK)
[Physica B, 1997, 229, 419], Parsafar, Spohr and Patey (PSP) [J. Phys. Chem. B,
2009, 113, 11980], and reformulated PM and SSK EOSs are applied to 30 metallic
solids within wide pressure ranges. It is shown that the PM, PMR and PSP EOSs
for most solids, and the SSK and SSKR EOSs for several solids, have physically
incorrect turning points, and pressure becomes negative at high enough
pressure. The GLIR EOS is capable not only of overcoming the problem existing
in other five EOSs where the pressure becomes negative at high pressure, but
also gives results superior to other EOSs.Comment: 9 pages, 3 figure
A Phone Learning Model for Enhancing Productivity of Visually Impaired Civil Servants
Phone-based learning in civil service is the use of voice technologies to deliver learning and capacity building training services to
government employees. The Internet revolution and advancement in Information and Communications Technology (ICT) have given rise
to online and remote staff training for the purpose of enhancing workers productivity. The need for civil servants in Nigeria to develop
capacity that will enhance knowledge is a key requirement to having competitive advantage in the work place. Existing online learning
platforms (such as web-based learning, mobile learning, etc) did not consider the plight of the visually impaired. These platforms provide
graphical interfaces that require sight to access. The visually impaired civil servants require auditory access to functionalities that exist in
learning management system on the Internet. Thus a gap exist between the able-bodied and visually impaired civil servants on
accessibility to e-learning platform. The objective of this paper is to provide a personalized telephone learning model and a prototype
application that will enhance the productivity of the visually impaired workers in Government establishments in Nigeria. The model was
designed using Unified Modeling Language (UML) diagram. The prototype application was implemented and evaluated. With the
proposed model and application, the visually and mobility impaired worker are able to participate in routine staff training and
consequently enhances their productivity just like their able-bodied counterparts. The prototype application also serves as an alternative
training platform for the able-bodied workers. Future research direction for this study will include biometric authentication of learners
accessing the applicatio
Radio continuum and polarization study of SNR G57.2+0.8 associated with magnetar SGR1935+2154
We present a radio continuum and linear polarization study of the Galactic
supernova remnant G57.2+0.8, which may host the recently discovered magnetar
SGR1935+2154. The radio SNR shows the typical radio continuum spectrum of a
mature supernova remnant with a spectral index of and
moderate polarized intensity. Magnetic field vectors indicate a tangential
magnetic field, expected for an evolved SNR, in one part of the SNR and a
radial magnetic field in the other. The latter can be explained by an
overlapping arc-like feature, perhaps a pulsar wind nebula, emanating from the
magnetar. The presence of a pulsar wind nebula is supported by the low average
braking index of 1.2, we extrapolated for the magnetar, and the detection of
diffuse X-ray emission around it. We found a distance of 12.5 kpc for the SNR,
which identifies G57.2+0.8 as a resident of the Outer spiral arm of the Milky
Way. The SNR has a radius of about 20 pc and could be as old as 41,000 years.
The SNR has already entered the radiative or pressure-driven snowplow phase of
its evolution. We compared independently determined characteristics like age
and distance for both, the SNR and SGR1935+2154, and conclude that they are
physically related.Comment: accepted by The Astrophysical Journal, 16 pages, 10 figure
Recommended from our members
A Preliminary Study on Using Multi-Nozzle Polymer Deposition System to Fabricate Composite Alginate/Carbon Nanotube Tissue Scaffolds
Three-dimensional composite alginate/single wall carbon nanotube (SWCNT) scaffolds
encapsulated with endothelial cells were fabricated by a multi-nozzle biopolymer freeform
deposition system. This system enables the converting of CAD designed scaffold pattern into
process toolpaths and the use of computer control program to guide the nozzle deposition at
spatial position for layered fabrication of 3D tissue scaffolds. The morphological, mechanical,
structural and biological properties of as-fabricated scaffolds were characterized by optical
microscope, SEM, Microtensile testing machine, Alamar Blue Assay, and Live-Dead Assay,
respectively. The multi-nozzle deposition system demonstrated a highly efficient and effective
process to build tissue scaffold or cell embedded constructs. Characterization results showed that
the incorporation of SWCNT into alginate not only enhanced the mechanical strength of the
scaffolds but also improved the cell affinity and the interaction with substrate. Further cell
culture experimental results also showed that the incorporation of SWCNT in alginate enhanced
endothelial cell proliferation compared with pure alginate scaffold.Mechanical Engineerin
Design of high-frequency Gm-C wavelet filters
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ECCTD.2009.5274969A high-frequency wavelet filter which employs Gm-C blocks based on leap-frog (LF) multiple-loop feedback (MLF) structure is presented. The proposed method is well suitable for high-quality high-frequency operation since the Gm-C based filter can achieve high frequency, whilst LF MLF configuration has the characteristics of lower magnitude sensitivity and capability of realizing arbitrary rational functions. The Marr wavelet is selected as an example in this paper, and the design for a 100 MHz frequency operation is elaborated. The wavelet filter is simulated using TSMC 1.8 V 0.18 mum CMOS technology. Simulation results indicate that the proposed method is feasible for high frequency operation with relatively low power consumption.Peer reviewe
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
Low-temperature nodal-quasiparticle transport in lightly doped YBa_{2}Cu_{3}O_{y} near the edge of the superconducting doping regime
In-plane transport properties of nonsuperconducting YBa_{2}Cu_{3}O_{y} (y =
6.35) are measured using high-quality untwinned single crystals. We find that
both the a- and b-axis resistivities show log(1/T) divergence down to 80 mK,
and accordingly the thermal conductivity data indicate that the nodal
quasiparticles are progressively localized with lowering temperature. Hence,
both the charge and heat transport data do not support the existence of a
"thermal metal" in nonsuperconducting YBa_{2}Cu_{3}O_{y}, as opposed to a
recent report by Sutherland {\it et al.} [Phys. Rev. Lett. {\bf 94}, 147004
(2005)]. Besides, the present data demonstrate that the peculiar log(1/T)
resistivity divergence of cuprate is {\it not} a property associated with
high-magnetic fields.Comment: 4 pages, 3 figures. Our previous main claim that the pseudogap state
of cuprates is inherently insulating was found to be erroneous and has been
retracted; the paper now focuses on the log(1/T) resistivity divergence and
its implication
- …