1,341 research outputs found

    On Dark Peaks and Missing Mass: A Weak-Lensing Mass Reconstruction of the Merging Cluster System A520

    Get PDF
    Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-interaction cross-section of order 1 sq cm/g. The cluster A520 has been seen as a possible exception. We revisit A520 presenting new Hubble Space Telescope Advanced Camera for Surveys mosaic images and a Magellan image set. We perform a detailed weak-lensing analysis and show that the weak-lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is, however, one significant difference: We do not detect the previously claimed "dark core" that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least approx 5alpha larger than the upper limit of 0.7 sq cm/g determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies.We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario

    A UV to Mid-IR Study of AGN Selection

    Get PDF
    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 sq. deg Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC/MIPS) data, as well as spectroscopic redshifts for ~20,000 objects, primarily from the AGN and Galaxy Evolution Survey (AGES). We fit galaxy, AGN, stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are sigma/(1+z)=0.040 and sigma/(1+z)=0.169, respectively, with the worst 5% outliers excluded. Based on the reduced chi-squared of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I=23.5. We compare the SED fits for a galaxy-only model and a galaxy+AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGN, including spatially resolved AGN with significant contributions from the host galaxy and objects with the emission line ratios of "composite" spectra. We also use our results to compare to the X-ray, mid-IR, optical color and emission line ratio selection techniques. For an F-ratio threshold of F>10 we find 16,266 AGN candidates brighter than I=23.5 and a surface density of ~1900 AGN per deg^2.Comment: Submitted to ApJ, 35 pages, 17 figures, 2 table

    Targeting of MKRNI for identifying cancer treatment agents

    Get PDF
    The molecular chaperone Hsp90 binds specifically to hTERT and is required for assembly of active telomerase activity. We show that disruption of Hsp90 function gy geldanamycin efficient ubiquitination and proteasome-mediated degradation of hTERT

    Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT

    Get PDF
    Telomere homeostasis is regulated by telomerase and a collection of associatedproteins. Telomerase is, in turn, regulated by post-translational modifications of the rate-limiting catalytic subunit hTERT. Here we show that disruption of Hsp90 by geldanamycin promotes efficient ubiquitination and proteasome-mediated degradation of hTERT. Furthermore, we have used the yeast two-hybrid method to identify a novel RING finger gene (MKRN1) encoding an E3 ligase that mediates ubiquitination of hTERT. Overexpression of MKRN1 in telomerase-positive cells promotes the degradation of hTERT and decreases telomerase activity and subsequently telomere length. Our data suggest that MKRN1 plays an important role in modulating telomere length homeostasis through a dynamic balance involving hTERT protein stability

    The impact of sagittal balance on clinical results after posterior interbody fusion for patients with degenerative spondylolisthesis: A Pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparatively little is known about the relation between the sagittal vertical axis and clinical outcome in cases of degenerative lumbar spondylolisthesis. The objective of this study was to determine whether lumbar sagittal balance affects clinical outcomes after posterior interbody fusion. This series suggests that consideration of sagittal balance during posterior interbody fusion for degenerative spondylolisthesis can yield high levels of patient satisfaction and restore spinal balance</p> <p>Methods</p> <p>A retrospective study of clinical outcomes and a radiological review was performed on 18 patients with one or two level degenerative spondylolisthesis. Patients were divided into two groups: the patients without improvement in pelvic tilt, postoperatively (Group A; n = 10) and the patients with improvement in pelvic tilt postoperatively (Group B; n = 8). Pre- and postoperative clinical outcome surveys were administered to determine Visual Analogue Pain Scores (VAS) and Oswestry disability index (ODI). In addition, we evaluated full spine radiographic films for pelvic tilt (PT), sacral slope (SS), pelvic incidence (PI), thoracic kyphosis (TK), lumbar lordosis (LL), sacrofemoral distance (SFD), and sacro C7 plumb line distance (SC7D)</p> <p>Results</p> <p>All 18 patients underwent surgery principally for the relief of radicular leg pain and back pain. In groups A and B, mean preoperative VAS were 6.85 and 6.81, respectively, and these improved to 3.20 and 1.63 at last follow-up. Mean preoperative ODI were 43.2 and 50.4, respectively, and these improved to 23.6 and 18.9 at last follow-up. In spinopelvic parameters, no significant difference was found between preoperative and follow up variables except PT in Group A. However, significant difference was found between the preoperative and follows up values of PT, SS, TK, LL, and SFD/SC7D in Group B. Between parameters of group A and B, there is borderline significance on preoperative PT, preoperative LL and last follow up SS.</p> <p>Correlation analysis revealed the VAS improvements in Group A were significantly related to postoperative lumbar lordosis (Pearson's coefficient = -0.829; p = 0.003). Similarly, ODI improvements were also associated with postoperative lumbar lordosis (Pearson's coefficient = -0.700; p = 0.024). However, in Group B, VAS and ODI improvements were not found to be related to postoperative lumbar lordosis and to spinopelvic parameters.</p> <p>Conclusion</p> <p>In the current series, patients improving PT after fusion were found to achieve good clinical outcomes in degenerative spondylolisthesis. Overall, our findings show that it is important to quantify sagittal spinopelvic parameters and promote sagittal balance when performing lumbar fusion for degenerative spondylolisthesis.</p

    Star Formation and AGN Activity in Galaxy Clusters from z=12z=1-2: a Multi-wavelength Analysis Featuring HerschelHerschel/PACS

    Full text link
    We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive (1014M\gtrsim10^{14}\,\rm{M_{\odot}}) galaxy clusters at 1<z<1.751<z<1.75. Using new, deep HerschelHerschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z1.4z\gtrsim1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r<0.5r<0.5\,Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z1z\sim1. Enhanced SFRs are found in lower mass (10.1<logM/M<10.810.1< \log \rm{M_{\star}}/\rm{M_{\odot}}<10.8) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from z=0.52z=0.5-2, finding an excess AGN fraction at z1z\gtrsim1, suggesting environmental triggering of AGN during this epoch. We argue that our results - a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN - are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.Comment: 26 pages, 14 figures, 6 tables with appendix, accepted for publication in the Astrophysical Journa

    Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have provided important findings about the roles of Notch signaling in neural development. Unfortunately, however, most of these studies have investigated the neural stem cells (NSCs) of mice or other laboratory animals rather than humans, mainly owing to the difficulties associated with obtaining human brain samples. It prompted us to focus on neuroectodermal spheres (NESs) which are derived from human embryonic stem cell (hESC) and densely inhabited by NSCs. We here investigated the role of Notch signaling with the hESC-derived NESs.</p> <p>Results</p> <p>From hESCs, we derived NESs, the <it>in-vitro </it>version of brain-derived neurospheres. NES formation was confirmed by increased levels of various NSC marker genes and the emergence of rosette structures in which neuroprogenitors are known to reside. We found that Notch signaling, which maintains stem cell characteristics of <it>in-vivo</it>-derived neuroprogenitors, is active in these hESC-derived NESs, similar to their <it>in-vivo </it>counterpart. Expression levels of Notch signaling molecules such as NICD, DLLs, JAG1, HES1 and HES5 were increased in the NESs. Inhibition of the Notch signaling by a γ-secretase inhibitor reduced rosette structures, expression levels of NSC marker genes and proliferation potential in the NESs, and, if combined with withdrawal of growth factors, triggered differentiation toward neurons.</p> <p>Conclusion</p> <p>Our results indicate that the hESC-derived NESs, which share biochemical features with brain-derived neurospheres, maintain stem cell characteristics mainly through Notch signaling, which suggests that the hESC-derived NESs could be an <it>in-vitro </it>model for <it>in-vivo </it>neurogenesis.</p
    corecore