9,946 research outputs found

    A Quantile Variant of the EM Algorithm and Its Applications to Parameter Estimation with Interval Data

    Full text link
    The expectation-maximization (EM) algorithm is a powerful computational technique for finding the maximum likelihood estimates for parametric models when the data are not fully observed. The EM is best suited for situations where the expectation in each E-step and the maximization in each M-step are straightforward. A difficulty with the implementation of the EM algorithm is that each E-step requires the integration of the log-likelihood function in closed form. The explicit integration can be avoided by using what is known as the Monte Carlo EM (MCEM) algorithm. The MCEM uses a random sample to estimate the integral at each E-step. However, the problem with the MCEM is that it often converges to the integral quite slowly and the convergence behavior can also be unstable, which causes a computational burden. In this paper, we propose what we refer to as the quantile variant of the EM (QEM) algorithm. We prove that the proposed QEM method has an accuracy of O(1/K2)O(1/K^2) while the MCEM method has an accuracy of Op(1/K)O_p(1/\sqrt{K}). Thus, the proposed QEM method possesses faster and more stable convergence properties when compared with the MCEM algorithm. The improved performance is illustrated through the numerical studies. Several practical examples illustrating its use in interval-censored data problems are also provided

    Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality

    Get PDF
    We study the dynamic sensitivity of an atomic ensemble dressed by a single-mode cavity field (called a photon-dressed atomic ensemble), which is described by the Dicke model near the quantum critical point. It is shown that when an extra atom in a pure initial state passes through the cavity, the photon-dressed atomic ensemble will experience a quantum phase transition showing an explicit sudden change in its dynamics characterized by the Loschmidt echo of this quantum critical system. With such dynamic sensitivity, the Dicke model can resemble the cloud chamber for detecting a flying particle by the enhanced trajectory due to the classical phase transition. © 2009 The American Physical Society.published_or_final_versio

    Multiport Bidirectional SRM Drives for Solar-Assisted Hybrid Electric Bus Powertrain With Flexible Driving and Self-Charging Functions

    Get PDF
    The hybrid electric bus (HEB) presents an emerging solution to exhaust gas emissions in urban transport. This paper proposes a multiport bidirectional switched reluctance motor (SRM) drive for solar-assisted HEB (SHEB) powertrain, which not only improves the motoring performance, but also achieves flexible charging functions. To extend the driving miles and achieve self-charging ability, photovoltaic (PV) panels are installed on the bus to decrease the reliance on fuelsbatteries and charging stations. A bidirectional front-end circuit with a PV-fed circuit is designed to integrate electrical components into one converter. Six driving and five charging modes are achieved. The dc voltage is boosted by the battery in generator control unit (GCU) driving mode and by the charge capacitor in battery driving mode, where the torque capability is improved. Usually, an extra converter is needed to achieve battery charging. In this paper, the battery can be directly charged by the demagnetization current in GCU or PV driving mode, and can be quickly charged by the PV panels and GCUAC grids at SHEB standstill conditions, by utilizing the traction motor windings and integrated converter circuit, without external charging converters. Experiments on a three-phase 128 SRM confirm the effectiveness of the proposed drive and control scheme

    Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials

    Get PDF
    Vitamin A palmitate and vitamin E TPGS, common derivatives of the unstable vitamins A and E, were successfully incorporated into biodegradable gelatin nanofibers via electrospinning. Electron microscopy showed that smooth cylindrical fibers were produced, albeit with a small amount of beading visible for the vitamin-loaded systems. The diameters of the fibers decrease with the addition of vitamins. The presence of the vitamins in the fibers was confirmed by IR spectroscopy, and X-ray diffraction showed them to exist in the amorphous physical form post-electrospinning. The addition of vitamins did not affect the hydrophilic properties of the gelatin nanofibers. Fibers containing vitamin A or E alone showed a sustained release profile over more than 60 hours, and those incorporating both vitamins showed similar release characteristics, except that the extent of release for vitamin A was increased. Antibacterial tests demonstrated that materials loaded with vitamin E were effective in inhibiting the growth of E. coli and S. aureus. The fibers could promote the proliferation of fibroblasts during the early stages of culture, and enhance the expression of collagen-specific genes. In vivo tests determined that the fibers loaded with vitamins have better wound healing performance than a commercially used antiseptic gauze and casting films

    Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials

    Get PDF
    To obtain wound dressings which could be removed easily without secondary injuries, we prepared thermoresponsive electrospun fiber mats containing poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA). Blend fibers of PDEGMA and poly(l-lactic acid-co-ε-caprolactone) (P(LLA-CL) were fabricated via electrospinning, and analogous fibers containing the antibiotic ciprofloxacin (CIF) were also prepared. Smooth cylindrical fibers were obtained, albeit with a small amount of beading visible for the ciprofloxacin-loaded fibers. X-ray diffraction showed the drug to exist in the amorphous physical form post-electrospinning. The composite fibers showed distinct thermosensitive properties and gave sustained release of CIF over more than 160h in vitro. The fibers could promote the proliferation of fibroblasts, and by varying the temperature cells could easily be attached to and detached from the fibers. Antibacterial tests demonstrated that fibers loaded with ciprofloxacin were effective in inhibiting the growth of E. coli and S. aureus. In vivo investigations on rats indicated that the composite PDEGMA/P(LLA-CL) fibers loaded with CIF had much more potent wound healing properties than a commercial gauze and CIF-loaded fibers made solely of P(LLA-CL). These results demonstrate the potential of PDEGMA/P(LLA-CL)/ciprofloxacin fibers as advanced wound dressing materials

    A standing-wave thermoacoustic engine driven by liquid nitrogen

    Get PDF
    Thermoacoustic oscillation at cryogenic temperatures, such as Taconis oscillation, has been typically suppressed in the former studies, and few efforts have been made to enhance it. We proposed a standing-wave thermoacoustic engine (TE) driven by liquid cryogens instead of the conventional heat to enhance the thermoacoustic effects and utilize the cold energy. Experimental and theoretical work has been performed on a self-made standingwave TE to demonstrate the feasibility and the operating characteristics of the engine driven by the liquid nitrogen. Experiments show that with nitrogen at 0.5 MPa as a working gas, a pressure ratio of 1.21 is obtained on the TE driven by liquid nitrogen with a much lower temperature difference along the stack compared to that of the conventional TE. The onset temperature difference decreases by 28.9% with helium at 0.63 MPa as a working gas, compared to that of the conventional TE. This study verifies the feasibility of enhancing the thermoacoustic oscillation at cryogenic temperatures. The TEs driven by liquid cryogens such as liquid nitrogen and liquefied nature gas (LNG), may be an alternative for recovering the cold energy

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework

    Starch Digestion Enhances Bioaccessibility of Anti-Inflammatory Polyphenols from Borlotti Beans (Phaseolus vulgaris)

    Get PDF
    The consumption of beans has been associated with chronic disease prevention which may be attributed to the polyphenols present in the seed coat and endosperm. However, their bioaccessibility is likely to be limited by interactions with bean matrix components, including starch, protein and fibre. The aim of this project was to evaluate the effect of domestic processing and enzymatic digestion on the bioaccessibility of polyphenols from Borlotti beans (Phaseolus vulgaris) and to test their anti-inflammatory properties in a macrophage cell model. In vitro digestion of cooked beans released twenty times more polyphenols (40.4 ± 2.5 mg gallic acid equivalents (GAE)/g) than domestic processing (2.22 ± 0.1 mg GAE/g), with starch digestion contributing to the highest release (30.9 ± 0.75 mg GAE/g). Fluorescence microscopy visualization of isolated bean starch suggests that polyphenols are embedded within the granule structure. LC-MS analysis showed that cooked Borlotti bean contain flavonoids, flavones and hydroxycinnamic acids, and cooked bean extracts exerted moderate anti-inflammatory effects by decreasing mRNA levels of IL1β and iNOS by 25% and 40%, respectively. In conclusion, the bioaccessibility of bean polyphenols is strongly enhanced by starch digestion. These polyphenols may contribute to the health benefits associated with bean consumption

    A Bound on the Superpotential

    Get PDF
    We prove a general bound on the superpotential in theories with broken supersymmetry and broken R-symmetry, 2|W|< f_a F, where f_a and F are the R-axion and Goldstino decay constants, respectively. The bound holds for weakly coupled as well as strongly coupled theories, thereby providing an exact result in theories with broken supersymmetry. We briefly discuss several possible applications.Comment: 20 page

    Effect of polar amino acid incorporation on Fmoc-diphenylalanine-based tetrapeptides.

    Full text link
    Peptide hydrogels show great promise as extracellular matrix mimics due to their tuneable, fibrous nature. Through incorporation of polar cationic, polar anionic or polar neutral amino acids into the Fmoc-diphenylalanine motif, we show that electrostatic charge plays a key role in the properties of the subsequent gelators. Specifically, we show that an inverse relationship exists for biocompatibility in the solution state versus the gel state for cationic and anionic peptides. Finally, we use tethered bilayer lipid membrane (tBLM) experiments to suggest a likely mode of cytotoxicity for tetrapeptides which exhibit cytotoxicity in the solution state
    corecore