102,664 research outputs found
Kinetics of dissociative chemisorption of methane and ethane on Pt(110)-(1X2)
The initial probability of dissociative chemisorption Pr of methane and ethane on the highly corrugated, reconstructed Pt(110)â(1Ă2) surface has been measured in a microreactor by counting the number of carbon atoms on the surface following the reaction of methane and ethane on the surface which was held at various constant temperatures between 450 and 900 K during the reaction. Methane dissociatively chemisorbs on the Pt(110)â(1Ă2) surface with an apparent activation energy of 14.4 kcal/mol and an apparent preexponential factor of 0.6. Ethane chemisorbs dissociatively with an apparent activation energy of 2.8 kcal/mol and an apparent preexponential factor of 4.7Ă10^(â3). Kinetic isotope effects were observed for both reactions. The fact that P_r is a strong function of surface temperature implies that the dissociation reactions proceed via a trappingâmediated mechanism. A model based on a trappingâmediated mechanism is used to explain the observed kinetic behavior. Kinetic parameters for CâH bond dissociation of the thermally accommodated methane and ethane are extracted from the model
The origins of electromechanical indentation size effect in ferroelectrics
Metals exhibit a size-dependent hardening when subject to indentation.
Mechanisms for this phenomenon have been intensely researched in recent times.
Does such a size-effect also exist in the electromechanical behavior of
ferroelectrics?--if yes, what are the operative mechanisms? Our experiments on
BaTiO3 indeed suggest an electromechanical size-effect. We argue, through
theoretical calculations and differential experiments on another
non-ferroelectric piezoelectric (Quartz), that the phenomenon of
flexoelectricity(as opposed to dislocation activity) is responsible for our
observations. Flexoelectricity is the coupling of strain gradients to
polarization and exists in both ordinary and piezoelectric dielectrics. In
particular, ferroelectrics exhibit an unusually large flexoelectric response.Comment: in revie
Indirect exchange of magnetic impurities in zigzag graphene ribbon
We use quantum Monte Carlo method to study the indirect coupling between two
magnetic impurities on the zigzag edge of graphene ribbon, with respect to the
chemical potential . We find that the spin-spin correlation between two
adatoms located on the nearest sites in the zigzag edge are drastically
suppressed around the zero-energy. As we switch the system away from
half-filling, the antiferromagnetic correlation is first enhanced and then
decreased. If the two adatoms are adsorbed on the sites belonging to the same
sublattice, we find similar behavior of spin-spin correlation except for a
crossover from ferromagnetic to antiferromagentic correlation in the vicinity
of zero-energy. We also calculated the weight of different components of
d-electron wave function and local magnet moment for various values of
parameters, and all the results are consistent with those of spin-spin
correlation between two magnetic impurities.Comment: 3 pages, 4 figures, conference proceedin
A bi-level model of dynamic traffic signal control with continuum approximation
This paper proposes a bi-level model for traffic network signal control, which is formulated as a dynamic Stackelberg game and solved as a mathematical program with equilibrium constraints (MPEC). The lower-level problem is a dynamic user equilibrium (DUE) with embedded dynamic network loading (DNL) sub-problem based on the LWR model (Lighthill and Whitham, 1955; Richards, 1956). The upper-level decision variables are (time-varying) signal green splits with the objective of minimizing network-wide travel cost. Unlike most existing literature which mainly use an on-and-off (binary) representation of the signal controls, we employ a continuum signal model recently proposed and analyzed in Han et al. (2014), which aims at describing and predicting the aggregate behavior that exists at signalized intersections without relying on distinct signal phases. Advantages of this continuum signal model include fewer integer variables, less restrictive constraints on the time steps, and higher decision resolution. It simplifies the modeling representation of large-scale urban traffic networks with the benefit of improved computational efficiency in simulation or optimization. We present, for the LWR-based DNL model that explicitly captures vehicle spillback, an in-depth study on the implementation of the continuum signal model, as its approximation accuracy depends on a number of factors and may deteriorate greatly under certain conditions. The proposed MPEC is solved on two test networks with three metaheuristic methods. Parallel computing is employed to significantly accelerate the solution procedure
Recommended from our members
Investigation of the Viscoelastic Effect on Optical- Fiber Sensing and Its Solution for 3D-Printed Sensor Packages
Viscoelasticity is an effect seen in a wide range of materials and it affects the reliability of static measurements made using Fiber Bragg Grating-based sensors, because either the target structure, the adhesive used, or the fiber itself could be viscoelastic. The effect of viscoelasticity on FBG-based sensing has been comprehensively researched through theoretical analysis and simulation using a finite-element approach and a further data processing method to reconstruct the graphical data has been developed. An integrated sensor package comprising of an FBG-based sensor in a polymer host and manufactured by using three-dimensional printing was investigated and examined through tensile testing to validate the approach. The application of the 3D-printed FBG-based sensor package, coupled to the data process method has been explored to monitor the height of a railway pantograph, a critical measurement requirement to monitor elongation, employing a method that can be used in the presence of electromagnetic interference. The results show that the effect of viscoelasticity can be effectively eliminated, and the graphical system response allows results that are sufficiently precise for field use to be generated
Gap Symmetry an Thermal Conductivity in Nodal Superconductors
There are now many nodal superconductors in heavy fermion (HF) systems,
charge conjugated organic metals, high Tc cuprates and ruthenates. On the other
hand only few of them have a well established gap function. We present here a
study of the angular dependent thermal conductivity in the vortex state of some
of the nodal superconductors. We hope it will help to identify the nodal
directions in the gap function of UPd_2Al_3, UNi_2Al_3, UBe_13 and URu_2Si_2.Comment: 4 pages, 5 figure
- âŠ