3,366 research outputs found

    Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation.

    Get PDF
    The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome

    Optically pumped ultraviolet lasing from nitride nanopillars at room temperature

    Get PDF
    A vertical cavity structure composing of an in situ grown bottom Al x Ga 1-x N/Al y Ga 1-y N distributed Bragg reflector and a top SiO 2 / HfO 2 dielectric mirror for ultraviolet (UV) emission has been demonstrated. Close-packed nanopillars with diameters of around 500 nm have been achieved by the route of nanosphere lithography combined with inductively-coupled plasma etching. Optically-pumped UV lasing at a wavelength of 343.7 nm (3.608 eV) was observed at room temperature, with a threshold excitation density of 0.52 MW/ cm 2. The mechanism of the lasing action is discussed in detail. Our investigation indicates promising possibilities in nitride-based resonant cavity devices, particularly toward realizing the UV nitride-based vertical-cavity surface-emitting laser. © 2010 American Institute of Physics.published_or_final_versio

    Controllable Synthesis of Magnesium Oxysulfate Nanowires with Different Morphologies

    Get PDF
    One-dimensional magnesium oxysulfate 5Mg(OH)2 · MgSO4 · 3H2O (abbreviated as 513MOS) with high aspect ratio has attracted much attention because of its distinctive properties from those of the conventional bulk materials. 513MOS nanowires with different morphologies were formed by varying the mixing ways of MgSO4 · 7H2O and NH4OH solutions at room temperature followed by hydrothermal treatment of the slurries at 150 °C for 12 h with or without EDTA. 513MOS nanowires with a length of 20–60 μm and a diameter of 60–300 nm were prepared in the case of double injection (adding MgSO4 · 7H2O and NH4OH solutions simultaneously into water), compared with the 513MOS with a length of 20–30 μm and a diameter of 0.3–1.7 μm in the case of the single injection (adding MgSO4 · 7H2O solution into NH4OH solution). The presence of minor amount of EDTA in the single injection method led to the formation of 513MOS nanowires with a length of 100–200 μm, a diameter of 80–200 nm, and an aspect ratio of up to 1000. The analysis of the experimental results indicated that the hydrothermal solutions with a lower supersaturation were favorable for the preferential growth of 513MOS nanowires along b axis

    Deformation of the Fermi surface in the extended Hubbard model

    Full text link
    The deformation of the Fermi surface induced by Coulomb interactions is investigated in the t-t'-Hubbard model. The interplay of the local U and extended V interactions is analyzed. It is found that exchange interactions V enhance small anisotropies producing deformations of the Fermi surface which break the point group symmetry of the square lattice at the Van Hove filling. This Pomeranchuck instability competes with ferromagnetism and is suppressed at a critical value of U(V). The interaction V renormalizes the t' parameter to smaller values what favours nesting. It also induces changes on the topology of the Fermi surface which can go from hole to electron-like what may explain recent ARPES experiments.Comment: 5 pages, 4 ps figure

    The prevalence of cervical cytology abnormalities and human papillomavirus in women infected with the human immunodeficiency virus

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The human papillomavirus (HPV) is the major etiologic agent in the development of cervical cancer and its natural history of infection is altered in persons infected with the human immunodeficiency virus (HIV). The prevalence of HPV infection and cervical dysplasia in the HIV sero-positive females in the Bahamas is not known. Finding out the prevalence would allow for the establishment of protocols to optimize total care of this population and help prevent morbidity and mortality related to cervical cancer.</p> <p>Objective</p> <p>The Objective of this study is to determine the prevalence of high risk HPV genotypes and the prevalence of cervical dysplasia in the HIV sero-positive females attending the Infectious Disease Clinic at the Princess Margaret Hospital, Nassau, Bahamas.</p> <p>Methods</p> <p>One hundred consecutive, consenting, non-pregnant, HIV-sero-positive females from the Infectious Disease Clinic at the Princess Margaret Hospital in Nassau, Bahamas were screened for high-risk HPV infections and cervical cytology abnormalities using liquid-based pap smear and signal amplification nucleic acid method for HPV detection. A questionnaire was also utilized to gather demographic information and obtain information on known risk factors associated with HPV infections such numbers of partners.</p> <p>Results</p> <p>The prevalence of high-risk HPV was 67% and cervical abnormalities were noted in 44% of the study population. High-risk HPV types were more likely to be present in women with CD4+ cell counts less than 400 μl<sup>-1 </sup>and in women with cervical cytology abnormalities (97%). The most common cervical abnormality was low-grade squamous intraepithelial lesions.</p> <p>Conclusion</p> <p>Findings suggest that HIV-sero positive females should have HPV testing done as part of their normal gynecology evaluation and these patients should be encouraged and provisions be made for ease of access having regular PAP smears and HPV testing.</p

    Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4

    Get PDF
    The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer

    SUMO chain formation is required for response to replication arrest in S. pombe

    Get PDF
    SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb
    corecore