877 research outputs found

    Effect of multilayer barriers on the optical properties of GaInNAs single quantum-well structures grown by metalorganic vapor phase epitaxy

    Get PDF
    We report on the effects of combined strain-compensating and strain-mediating layers of various widths on the optical properties of 1.3 μm GaInNAs∕GaAs single quantum well structures grown by metalorganic vapor phase epitaxy (MOVPE). While the emission wavelength of GaInNAs∕GaAs quantum wells can be redshifted by the adoption of strain-compensated GaNAs layers, the material quality is degraded by the increased stress at the well∕barrier interface. This detrimental effect can be cured by inserting a strain-mediating InGaAs layer between them. Contrary to what is expected, however, the emission wavelength is blueshifted by the insertion of the InGaAs layer, which is attributed to the reduced N incorporation due to the improved interface quality. Our results indicate that the optical properties of MOVPE-grown GaInNAs∕GaAs quantum wells can be optimized in quantum efficiency and emission wavelength by combination of strain-compensating and strain-mediating layers with suitable characteristics

    Spectroscopic characterization of 1.3µm GaInNAs quantum-well structures grown by metal-organic vapor phase epitaxy

    Get PDF
    We report optical studies of high-quality 1.3 μm strain-compensated GaInNAs/GaAs single-quantum-well structures grown by metalorganic vapor phase epitaxy. Photoluminescence excitation (PLE) spectroscopy shows clearly the electronic structure of the two-dimensional quantum well. The transition energies between quantized states of the electrons and holes are in agreement with theoretical calculations based on the band anti-crossing model in which the localized N states interact with the extended states in the conduction band. We also investigated the polarization properties of the luminescence by polarized edge-emission measurements. Luminescence bands with different polarization characters arising from the electron to heavy-hole and light-hole transitions, respectively, have been identified and verify the transition assignment observed in the PLE spectrum

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    Robust H-infinity filtering for 2-D systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac

    The novel mTOR inhibitor RAD001 (Everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells

    Get PDF
    Background/Aim: Tumors exhibiting constitutively activated PI(3) K/Akt/mTOR signaling are hypersensitive to mTOR inhibitors such as RAD001 (everolimus) which is presently being investigated in clinical phase II trials in various tumor entities, including neuroendocrine tumors (NETs). However, no preclinical data about the effects of RAD001 on NET cells have been published. In this study, we aimed to evaluate the effects of RAD001 on BON cells, a human pancreatic NET cell line that exhibits constitutively activated PI(3) K/Akt/mTOR signaling. Methods: BON cells were treated with different concentrations of RAD001 to analyze its effect on cell growth using proliferation assays. Apoptosis was examined by Western blot analysis of caspase-3/PARP cleavage and by FACS analysis of DNA fragmentation. Results: RAD001 potently inhibited BON cell growth in a dose-dependent manner which was dependent on the serum concentration in the medium. RAD001-induced growth inhibition involved G0/G1-phase arrest as well as induction of apoptosis. Conclusion: In summary, our data demonstrate antiproliferative and apoptotic effects of RAD001 in NET cells in vitro supporting its clinical use in current phase II trials in NET patients. Copyright (c) 2007 S. Karger AG, Basel

    Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum

    Full text link
    The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals considered are of the class generated iteratively by successive dilations and translations, and include generalizations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are treated. The general result is that the diffraction intensities obey a strict recursion relation, and become self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal dimension of the scattering object. Applications include neutron scattering, x-rays, optical diffraction, magnetic resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at http://www.fh.huji.ac.il/~dani

    Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles

    Full text link
    The evolution of the photospheric magnetic field during the declining phase and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the Spectromagnetograph and the 512-Channel Magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock-Leighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the activity level, as measured by total and maximum active region flux, during late Cycle 23 (after around 2004), when the southern hemisphere was more active, and Cycle 24 up to the present, when the northern hemisphere has been more active, than at any other time since 1974. The active region net proxy poloidal fields effectively disappeared in both hemispheres around 2004, and the polar fields did not become significantly stronger after this time. We see evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic

    Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model

    Get PDF
    We study the solutions of the gap equation, the thermodynamic potential and the chiral susceptibility in and beyond the chiral limit at finite chemical potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation between the chiral susceptibility and the thermodynamic potential in the NJL model. We find that the chiral susceptibility is a quantity being able to represent the furcation of the solutions of the gap equation and the concavo-convexity of the thermodynamic potential in NJL model. It indicates that the chiral susceptibility can identify the stable state and the possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte
    • …
    corecore