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Spectroscopic characterization of 1.3  um GalnNAs quantum-well structures
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We report optical studies of high-quality 1L8n strain-compensated GalnNAs/GaAs
single-quantum-well structures grown by metalorganic vapor phase epitaxy. Photoluminescence
excitation (PLE) spectroscopy shows clearly the electronic structure of the two-dimensional
quantum well. The transition energies between quantized states of the electrons and holes are in
agreement with theoretical calculations based on the band anti-crossing model in which the
localized N states interact with the extended states in the conduction band. We also investigated the
polarization properties of the Iluminescence by polarized edge-emission measurements.
Luminescence bands with different polarization characters arising from the electron to heavy-hole
and light-hole transitions, respectively, have been identified and verify the transition assignment
observed in the PLE spectrum. ZD05 American Institute of PhysidDOIl: 10.1063/1.1868866

There has been intense interest recently in dilute-nitridéarized PL properties are also reported, which is important on
-V compound semiconductors and their relatedthe one hand to verify the transition assignments and model-
heterostructure§f3Apart from intriguing fundamental physi- ing approach, and on the other hand for the development of
cal properties, these materials have been proposed for vaulevices such as polarization-insensitive semiconductor opti-
ous optoelectronic devices. (zg)InN,As;_)/GaAs het- cal amplifiers.
erostructures, in particular, are considered advantageous over The samples used in this study are grown by MOVPE in
InP-based material systems for selected important devices @ horizontal-type reactor at low pressuf@00 mbay on
optical fiber communications. Various devices with attractiveepiready(001) GaAs substrates. The SQW structure consists
performance based on GalnNAs materials have been devedf an 8.5 nm Ggedng 3N,As; -, QW sandwiched between
oped in the~1.3 um wavelength rang&,” and recently two 1 nm GaN ;,ASy g Strain-compensated layers and the
there have been substantial advances in the growth dbaAs barriers. The advantages of inserting such strain-
1.55um material$ Despite all this progress, growth of compensated layers have been described in Ref. 19. Trieth-
high-quality materials is still an important issue. Up to now,ylgallium, trimethylindium, tertiarybutylarsinédTBA), and
most of the GalnNAs material has been grown by moleculard,1-dimethyl hydrazinéDMHy) were used as respective pre-
beam epitaxy(MBE). For practical applications, the metal- cursors for the sources of Ga, In, As, and N, to grow the
organic vapor phase epitaX{yOVPE) technique is gener- GalnNAs layers. A 100 nm GaAs capping layer was grown
ally preferred because of its advantages in controllablet the QW growth temperature of 470 °C. All GalnNAs QW
growth and large-scale production. Currently, most efforts orsamples weré situ annealed at 650 °C for 10 min in AgH
MOVPE growth are still focused on optimizing the growth ambient. The resultant samples exhibit a mirror-like surface
conditions of the active quantum-welQW) structures;®®  and show clear interfaces between the layers, as observed by
although there are recent reports of high-performance edgésigh-resolution transmission electron microscopy. The N
emitting diode lasers based on GalnNAs/GaAs QWs growrtomposition in the QW is dependent on the gas-flow ratio of
by MOVPEM?Now that device-quality material grown by DMHy to TBA. For a SQW, it is hard to determine the N
MOVPE is emerging, it is important to study the optical composition precisely. As can be seen later, we determine it
properties of this material to compare and contrast paramby modeling the optical transition energies determined from
eters and modeling in detail to the MBE cdde® In this PLE spectra. For general PL measurements, the samples
letter, we investigate the detailed optical characterization ofvere excited by a high-power diode lagéi70 nm), and the
high-quality strain-compensated GalnNAs single-quantumPL signal was collected in conventional backscattering ge-
well (SQW) material grown by MOVPE, from a growth sys- ometry. For polarized PL measurements, the excitation laser
tem proven to produce high-performance laser diddes.  was directed perpendicular to the layer plane at the edge of
addition to the interband transitions between quantized QWhe sample, and the PL signal was observed along the layer
states observed by photoluminescence excitaiRitE), po-  plane. A linear polarizer was used to analyze the polarization

properties of the PL.
author to whom correspondence should be addressed; electronic mail: ~ Figure 1 shows representative PL and PLE spectra for a
handong.sun@strath.ac.uk sample that emits at a peak wavelength of 1340 nm at
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FIG. 1. Spectra of PL under excitation of 670 nm from the dispersed lamp
and PLE of the GalnNAs/GaAs SQW measured at a temperature of 14.8 KEIG. 2. Evolution of PL spectra with varyin@ temperature antb) exci-
tation power. The spectra i@ have been normalized at the main peak and
offset vertically for clarity. The dotted vertical line is a guide for the eye.

300 K. The step-like features in the PLE spectrum represent

the typical joint density of states of two-dimensional QW g(gies deviate gradually frortare lower thah the Varshni
structures. In order to identify the electronic states, we Ca'équation. This implies that at low temperatures, the PL

culated the band structure based on the band anti-crossiRgecnanism is not from the extended QW states but from
(BAC) model, in which the localized N states interact with |55lized state&

the extended states in the conduction b%fh?d,taking strain Figure 2b) shows the PL spectra of the same sample

effects into account. The valence band st.ruct% in the QW igheasured at 14.8 K with differing excitation intensity. It is
determined using a Luttinger—Kohn Hamiltoni@nlhe band  oted that the main PL peak shifts to higher energy as the
alignment between Ga/n,As/GaAs systems is In content gycitation intensity increases. A similar phenomenon has also

dependent, and therefore the ratio of band offset in conduGseen observed in MBE-grown GalnNAs/GaAs multiple
tion band to that in valence band witk35% is chosen to be g antum wellyMQWSs), and can be attributed to the satura-
0.8/0.2:" With respect to the alignment between GaNAs andijon, effect of localized stat€d.A striking feature in Fig. &)
GaAs, as there is still controversy on this issue, we followig hat with the increase of the excitation intensity there ap-

the idea of BAC model and consider that N only influencesyears another emission band on the higher energy side de-
the conduction band in GaNAs and the valence band ifoteq by a solid circle. It is also noted in Fig. 3 that the

aligned with GaAs. As the N concentration in the well is not re|ative intensity of this new band increases with tempera-

exactly known, we have calculated the N-content depeng,re Based on these features, this new emission band may be
dence of the interband transition energies. By comparing thgiyriputed to the glh, recombination. Although an_earlier
modeled results and experiment, we deduced the N conteg{,., observation was made by Kinet al?® in

to be 1.2%. With the assumption of the coupling strengths5inNAs/GaAs MQWSs, no further supportive evidence for

between the localized N states and the extended states in tQgcp an assignment has been given. Here we provide direct
conduction band a& typica) 2.45, the calculated first elec- yigence by a polarized PL measurement.

tron state-first heavy-hole state,-hh,) and first electron As is well known, in a compressively strained QW the
state-first light-hole statée;-lh,) transition energies were in | minescence from the electron to heavy-hole transitions is
good agreement with the measurements, as denoted on the
PLE spectrum(Fig. 1).

The PL properties have been investigated in detail by 0.99}
measurements under conditions of varying excitation inten- __ r ©oo%:
sity and temperature. Figurg&? shows the normalized PL %, 0.98
spectra of the sample under the excitation powerlpf = oo97|
=84 mW at various temperatures. The PL peak energy as a g
function of temperature is plotted in Fig. 3, in which Varshni & 0.96 -
empirical equatiorE(T)=E(0) - aT?/(T+ B) which describes x 095}
the temperature dependence of band gaps in semiconductors
is also plotted. At high temperatures, the experimental PL 5 0.941
energies agree very well with the Varshni equation. Least- 0. gg3]
squares fitting gives the fitting parametersand 8 as 4.6
X 10%eV/K and 254.2, respectively. The energy of the 0.92¢
e,-hh, transition observed in the PLE spectrum is denoted as 0 50 100 150 200 250 300

a solid circle in the figure, which is very close to the extrapo-
lation of Varshni formula to low temperature. Therefore, it is
concluded that the main PL at high temperature originated G, 3. Dependence of energy at the main PL peak on temperature. The

recombination from extended QW stat@s-hh, transition). solid curve is the fitting of Varshni equation. The solid circle represents the

However, with the decrease of temperature, the PL peak ernergy of g-hh, transition determined by PLE spectrum at 14.8 K.
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~ 10 ehh, e, in close consistence with the energy splitting between e
3 7 : -hh; and g-lh; transitions(123 me\j deduced by the PLE
2 0.8 spectrum in Fig. 1. Therefore, the high-energy emission band
% T Bl can be safely assigned tg-H, transition.
= 06 7 ‘ J In summary, high-quality 1.2um strain-compensated
s Ol Y 2 meneor GalnNAs/GaAs QW samples grown by MOVPE have been
k= 04 o 3 vertical studied in detail by optical measurements. The electronic
3 4 cunve Zourve 3 structure has been investigated by PLE. The observed tran-
N ) sition energies are consistent with theoretical calculations
g 02y based on the BAC model. The polarization dependence of
5 the PL observed in the direction of a cleaved edge has been
z 00} used to identify the character of the optical transitions.
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