35,157 research outputs found
Data Offloading in Load Coupled Networks: A Utility Maximization Framework
We provide a general framework for the problem of data offloading in a
heterogeneous wireless network, where some demand of cellular users is served
by a complementary network. The complementary network is either a small-cell
network that shares the same resources as the cellular network, or a WiFi
network that uses orthogonal resources. For a given demand served in a cellular
network, the load, or the level of resource usage, of each cell depends in a
non-linear manner on the load of other cells due to the mutual coupling of
interference seen by one another. With load coupling, we optimize the demand to
be served in the cellular or the complementary networks, so as to maximize a
utility function. We consider three representative utility functions that
balance, to varying degrees, the revenue from serving the users vs the user
fairness. We establish conditions for which the optimization problem has a
feasible solution and is convex, and hence tractable to numerical computations.
Finally, we propose a strategy with theoretical justification to constrain the
load to some maximum value, as required for practical implementation. Numerical
studies are conducted for both under-loaded and over-loaded networks.Comment: 12 pages, accepted for publication in IEEE Transactions on Wireless
Communication
Multivariate Bernoulli and Euler polynomials via L\'evy processes
By a symbolic method, we introduce multivariate Bernoulli and Euler
polynomials as powers of polynomials whose coefficients involve multivariate
L\'evy processes. Many properties of these polynomials are stated
straightforwardly thanks to this representation, which could be easily
implemented in any symbolic manipulation system. A very simple relation between
these two families of multivariate polynomials is provided
Power and Channel Allocation for Non-orthogonal Multiple Access in 5G Systems: Tractability and Computation
Network capacity calls for significant increase for 5G cellular systems. A
promising multi-user access scheme, non-orthogonal multiple access (NOMA) with
successive interference cancellation (SIC), is currently under consideration.
In NOMA, spectrum efficiency is improved by allowing more than one user to
simultaneously access the same frequency-time resource and separating
multi-user signals by SIC at the receiver. These render resource allocation and
optimization in NOMA different from orthogonal multiple access in 4G. In this
paper, we provide theoretical insights and algorithmic solutions to jointly
optimize power and channel allocation in NOMA. For utility maximization, we
mathematically formulate NOMA resource allocation problems. We characterize and
analyze the problems' tractability under a range of constraints and utility
functions. For tractable cases, we provide polynomial-time solutions for global
optimality. For intractable cases, we prove the NP-hardness and propose an
algorithmic framework combining Lagrangian duality and dynamic programming
(LDDP) to deliver near-optimal solutions. To gauge the performance of the
obtained solutions, we also provide optimality bounds on the global optimum.
Numerical results demonstrate that the proposed algorithmic solution can
significantly improve the system performance in both throughput and fairness
over orthogonal multiple access as well as over a previous NOMA resource
allocation scheme.Comment: IEEE Transactions on Wireless Communications, revisio
Optimal Cell Clustering and Activation for Energy Saving in Load-Coupled Wireless Networks
Optimizing activation and deactivation of base station transmissions provides
an instrument for improving energy efficiency in cellular networks. In this
paper, we study optimal cell clustering and scheduling of activation duration
for each cluster, with the objective of minimizing the sum energy, subject to a
time constraint of delivering the users' traffic demand. The cells within a
cluster are simultaneously in transmission and napping modes, with cluster
activation and deactivation, respectively. Our optimization framework accounts
for the coupling relation among cells due to the mutual interference. Thus, the
users' achievable rates in a cell depend on the cluster composition. On the
theoretical side, we provide mathematical formulation and structural
characterization for the energy-efficient cell clustering and scheduling
optimization problem, and prove its NP hardness. On the algorithmic side, we
first show how column generation facilitates problem solving, and then present
our notion of local enumeration as a flexible and effective means for dealing
with the trade-off between optimality and the combinatorial nature of cluster
formation, as well as for the purpose of gauging the deviation from optimality.
Numerical results demonstrate that our solutions achieve more than 60% energy
saving over existing schemes, and that the solutions we obtain are within a few
percent of deviation from global optimum.Comment: Revision, IEEE Transactions on Wireless Communication
On Power and Load Coupling in Cellular Networks for Energy Optimization
We consider the problem of minimization of sum transmission energy in
cellular networks where coupling occurs between cells due to mutual
interference. The coupling relation is characterized by the
signal-to-interference-and-noise-ratio (SINR) coupling model. Both cell load
and transmission power, where cell load measures the average level of resource
usage in the cell, interact via the coupling model. The coupling is implicitly
characterized with load and power as the variables of interest using two
equivalent equations, namely, non-linear load coupling equation (NLCE) and
non-linear power coupling equation (NPCE), respectively. By analyzing the NLCE
and NPCE, we prove that operating at full load is optimal in minimizing sum
energy, and provide an iterative power adjustment algorithm to obtain the
corresponding optimal power solution with guaranteed convergence, where in each
iteration a standard bisection search is employed. To obtain the algorithmic
result, we use the properties of the so-called standard interference function;
the proof is non-standard because the NPCE cannot even be expressed as a
closed-form expression with power as the implicit variable of interest. We
present numerical results illustrating the theoretical findings for a real-life
and large-scale cellular network, showing the advantage of our solution
compared to the conventional solution of deploying uniform power for base
stations.Comment: Accepted for publication in IEEE Transactions on Wireless
Communication
- …