48 research outputs found
Penerapan Bermain Messy Play dalam Meningkatkan Kemampuan Motorik Halus Anak Tk Kelompok A
Salah satu aspek kemampuan yang penting untuk dikembangkan pada anak usia dini adalahkemampuan motorik halus anak. Kemampuan motorik halus membantu anak untukmemperoleh kemandiriannya, membantu mendapatkan penerimaan sosial, dan dapatmenimbulkan rasa percaya diri pada anak. Kemampuan motorik halus dapat ditingkatkan melaluibermain messy play. Messy Play merupakan jenis permainan yang merangsang sensor motorikhalus dan kasar.Permainan ini dilakukan anak baik di alam terbuka maupun di dalam ruangandan membuat tubuh anak menjadi kotor, sehingga dikatakan dengan bermain messy play.Selaintubuh anak aktif, anak juga akan belajar mengkoordinasikan panca inderanya melalui sentuhan,bau, rasa, pendengaran, dan penglihatan. Tujuan dalam penelitian ini yaitu (1)mendeskripsikanpenerapan bermain messy play dalam meningkatkan kemampuan motorik halus anak KelompokA, (2) Mendeskripsikan hasil penerapan bermain messy play dalam meningkatkan kemampuanmotorik halus anak Kelompok A. Sedangkan luaran yang ditargetkan dalam penelitian ini adalahtersedianya perangkat pembelajaran dengan penerapan bermain Messy Play untukmeningkatkan kemampuan motorik halus pada anak TK kelompok A. Metode yang digunakandalam penelitian ini adalah metode penelitian tindakan kelas (PTK) yang dilakukan melalui 4tahapan dalam setiap siklusnya. Adapun tahapan tersebut adalah: (1) perencanaan, (2)pelaksanaan, (3) observasi, dan (4) refleksi. Penelitian ini dilaksanakan di TK Aisyiyah BustanulAthfal Kalibader dengan 2 siklus. Siklus I dilakukan empat kali pertemuan, jika dalam siklus Ibelum berhasil, maka dilakukan siklus II dengan tiga kali pertemuan. Teknik pengumpulan datamenggunakan observasi, lembar asesmen, wawancara dan dokumentasi. Hasil penerapanbermain messy play dapat meningkatkan kemampuan motorik halus anak kelompok A di TKAisyiyah Kalibader. Hal ini dibuktikan adanya peningkatan pada nilai ketuntasan di siklus I dansiklus II. Pada siklus I ketuntasan nilai keseluruhan kelompok A adalah 65%, dan pada siklus IIketuntasan nilai keseluruhan kelompok A adalah 88,1%. Hal ini membuktikan adanya peningkatankemampuan motorik halus anak kelompok A setelah dilakukan penerapan bermain messy play
Protein Mixture Segregation at Coffee-Ring: Real-Time Imaging of Protein Ring Precipitation by FTIR Spectromicroscopy
During
natural drying process, all solutions and suspensions tend
to form the so-called âcoffee-ringâ deposits. This phenomenon,
by far, has been interpreted by the hydrodynamics of evaporating fluids.
However, in this study, by applying Fourier transform infrared imaging
(FTIRI), it is possible to observe the segregation and separation
of a protein mixture at the âringâ, hence we suggest
a new way to interpret âcoffee-ring effectâ of solutions.
The results explore the dynamic process that leads to the ring formation
in case of model plasma proteins, such as BGG (bovine Îł globulin),
BSA (bovine serum albumin), and Hfib (human fibrinogen), and also
report fascinating discovery of the segregation at the ring deposits
of two model proteins BGG and BSA, which can be explained by an energy
kinetic model, only. The investigation suggests that the coffee-ring
effect of solute in an evaporating solution drop is driven by an energy
gradient created from change of particleâwaterâair interfacial
energy configuration
Dynamics of A<sub>2<i>A</i></sub>AR in 10-binary switch representation.
<p>(a) Simulation trajectories of antagonist (blue), apo (black), agonist (red) form represented in terms of the ON/OFF state of 10 switches. The lines denote the ON states, and the trajectories evolve from the top to bottom. (b) Mean value of each switch with error bar denoting the standard deviation. (c) Time traces of the microstates represented by the decimal numbers from 0 to 1023 in the apo (black), antagonist-bound (blue), and agonist-bound (red) forms. (d) Corresponding population of the microstates. (e) A schematic of similarity between three receptor states in terms of Hamming distance <i>d</i><sub><i>αÎČ</i></sub> with the measure of complexity, <i>I</i> (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004044#pcbi.1004044.e035" target="_blank">Eq. 2</a>), illustrated with polygons.</p
Agonist inserted to apo form.
<p>(a) Time traces from the case 1 to case 4. In the cases 1 and 2, the agonist was inserted into the apo form when the ionic-lock was intact; whereas in the cases 3 and 4, the agonist was inserted when the ionic-lock was disrupted. (b) Average values of switch from 1 to 10 for the case 1 through 4. (c) Population of microstates sampled after the insertion of agonist. (d) Hamming distance and complexity calculated for cases 1â4. (e) The stars are the locations of the cases from 1 to 4, calculated in terms of Hamming distance relative to the apo, antagonist, and agonist forms.</p
5 to 10 defined from the rotameric switches in TM4, TM5, TM6, and TM7.
<p>Rotameric states of (a) W129, (b) Y197, (c) CWxP motif, and (d) NPxxY motif are compared for the apo (white), antagonist-bound (cyan), and agonist-bound (pink) forms. (e) Helix bending in TM7. The helix bending angle (bendix) of TM7 was calculated using bendix program [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004044#pcbi.1004044.ref045" target="_blank">45</a>]. The helix is displayed as a cylinder marked with the heatmap ranging from 0<sup><i>o</i></sup> to 20<sup><i>o</i></sup>. The scatter plot on right side depicts the relationship between H-bond of N280-S281 and the bending angle of the TM7 helix (apo: black, antagonist-bound: blue, agonist-bound states: red). The average bending angles are annotated with the symbols, X.</p
Cross-correlations among binary switches.
<p>(a) Cross-correlation matrices between the changes in 10 ON/OFF switches for three distinct receptor states calculated by using <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004044#pcbi.1004044.g003" target="_blank">Fig. 3</a>. The symbols âPâ in the matrix elements are for the postive correlatin (<i>C</i><sub><i>ij</i></sub> > 0.25); âNâ is for the negative correlation (<i>C</i><sub><i>ij</i></sub> < â0.25). (b) Diagram of the cross-correlation between the switches. TM1 to TM7 helices are displayed in gray circles, and the ten switches are specified with the boxes. The positive and negative correlations are depicted using red and blue lines, respectively. (c) Coordination of the antagonist and agonist to 7 (W246). W246 and the bound ligands are depicted in the left and right figures. The graph in the middle shows the distances between the center of mass of the W246 (indole 6-ring) and the center of mass of the furan ring (ZM-241385, blue) and ethyl group (UK-432097, red).</p
Microstates observed during the MD simulation and their occupancies.
<p>For each microstate, the switches in the ON state (<i>s</i><sub><i>i</i></sub> = 1) are marked with colored boxes.</p
Ten binary switches.
<p>The time traces of the apo, antagonist-bound, and agonist-bound forms are colored by black, blue, and red, respectively, and their histograms are shown on the right side of the panels. From 4 to 10, the values separating the on and off states are marked in red circles.</p
Comparison of the structures of DNMT1 and DNMT3A.
<p>(A) Structure alignment of MTase with other domains of DNMT1 and DNMT3A. The BAH1, BAH2, CXXC, autoinhibitory linker, TRD region and MTase domain of DNMT1 are colored in blue, orange, red, yellow and pink, respectively. The MTase domain of DNMT3A is colored in green and bound SAH is in space fill representation. (B) Sequence alignment of MTase domain of DNMT1 and DNMT3A. Weak-to-identical sequence similarities are colored in hues graded from light blue to dark blue. Identical residues interacting with ligands have been indicated with dots. Red cylinder and blue arrows represent helices and ÎČ-strands, respectively.</p
Schematic representation of DNMT1 and 3s.
<p>NLS, nuclear localization signal; RFD, replication foci-targeting sequence; BAH, bromo-adjacent homology domain; TRD, target recognition domain; PWWP, a conserved region containing the core tetrapeptide of âproline-tryptophan-tryptophan-prolineâ; ATRX, cys-rich region. Interaction domains of HDAC1, HDAC2, and the DNMT3s are indicated. The methyltransferase domain comprising six most conserved motifs is enlarged.</p