5,168 research outputs found

    Thermal evolution history after collision of North China plate with Yangtze plate

    Get PDF
    对采自苏北一胶南一大别高压变质构造混杂岩带的片麻岩、糜棱岩和郑庐断裂带上的片麻岩中9个钾长石进行了40Ar-39Ar 年龄测定和多重扩散域(MDD)模式处理, 9个样品的热演化史表明上述地区存在5个不同的快速冷却时段, 并就其可能的构造含义, 提出了华北与扬子板块碰撞后的折返历史过程。40Ar-39Ar analyses and MDD(multiple diffusion domain)model treatements were performed for 9 K-feldspar samples. They were collected from gneiss and mylonite of North Jiangsu-Jiaonan-Dabie tectonic melange belt and Tancheng-Lujiang fault zone. The thermal evolution history exhibits five fast ccoling stages found in these samples.In relation with their possible tectonic implications a recovery process after the collision of the North China plate with the Yangtze plate is suggested here.published_or_final_versio

    Global small RNA analysis in fast-growing Arabidopsis thaliana with elevated concentrations of ATP and sugars

    Get PDF
    BACKGROUND: In higher eukaryotes, small RNAs play a role in regulating gene expression. Overexpression (OE) lines of Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) were shown to grow faster and exhibit higher ATP and sugar contents. Leaf microarray studies showed that many genes involved in microRNAs (miRNAs) and trans-acting siRNAs (tasiRNAs) biogenesis were significantly changed in the fast-growing lines. In this study, the sRNA profiles of the leaf and the root of 20-day-old plants were sequenced and the impacts of high energy status on sRNA expression were analyzed. RESULTS: 9-13 million reads from each library were mapped to genome. miRNAs, tasiRNAs and natural antisense transcripts-generated small interfering RNAs (natsiRNAs) were identified and compared between libraries. In the leaf of OE lines, 15 known miRNAs increased in abundance and 9 miRNAs decreased in abundance, whereas in the root of OE lines, 2 known miRNAs increased in abundance and 9 miRNAs decreased in abundance. miRNAs with increased abundance in the leaf and root samples of both OE lines (miR158b and miR172a/b) were predicted to target mRNAs coding for Dof zinc finger protein and Apetala 2 (AP2) proteins, respectively. Furthermore, a significant change in the miR173-tasiRNAs-PPR/TPR network was observed in the leaves of both OE lines. CONCLUSION: In this study, the impact of high energy content on the sRNA profiles of Arabidopsis is reported. While the abundance of many stress-induced miRNAs is unaltered, the abundance of some miRNAs related to plant growth and development (miR172 and miR319) is elevated in the fast-growing lines. An induction of miR173-tasiRNAs-PPR/TPR network was also observed in the OE lines. In contrast, only few cis- and trans-natsiRNAs are altered in the fast-growing lines.published_or_final_versio

    Global transcriptome analysis of AtPAP2--overexpressing Arabidopsis thaliana with elevated ATP

    Get PDF
    BACKGROUND: AtPAP2 is a purple acid phosphatase that is targeted to both chloroplasts and mitochondria. Over-expression (OE) lines of AtPAP2 grew faster, produced more seeds, and contained higher leaf sucrose and glucose contents. The present study aimed to determine how high energy status affects leaf and root transcriptomes. RESULTS: ATP and ADP levels in the OE lines are 30-50% and 20-50% higher than in the wild-type (WT) plants. Global transcriptome analyses indicated that transcriptional regulation does play a role in sucrose and starch metabolism, nitrogen, potassium and iron uptake, amino acids and secondary metabolites metabolism when there is an ample supply of energy. While the transcript abundance of genes encoding protein components of photosystem I (PS I), photosystem II (PS II) and light harvesting complex I (LHCI) were unaltered, changes in transcript abundance for genes encoding proteins of LHCII are significant. The gene expressions of most enzymes of the Calvin cycle, glycolysis and the tricarboxylic acid (TCA) cycle were unaltered, as these enzymes are known to be regulated by light/redox status or allosteric modulation by the products (e.g. citrate, ATP/ADP ratio), but not at the level of transcription. CONCLUSIONS: AtPAP2 overexpression resulted in a widespread reprogramming of the transcriptome in the transgenic plants, which is characterized by changes in the carbon, nitrogen, potassium, and iron metabolism. The fast-growing AtPAP2 OE lines provide an interesting tool for studying the regulation of energy system in plant.published_or_final_versio

    Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development

    Get PDF
    Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield.postprin

    Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana

    Get PDF
    published_or_final_versio

    AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts

    Get PDF
    published_or_final_versio

    Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination

    Get PDF
    BACKGROUND: Light plays an important role in plant growth and development. In this study, the impact of light on physiology of 20-d-old Arabidopsis leaves was examined through transcriptomic, proteomic and metabolomic analysis. Since the energy-generating electron transport chains in chloroplasts and mitochondria are encoded by both nuclear and organellar genomes, sequencing total RNA after removal of ribosomal RNAs provides essential information on transcription of organellar genomes. The changes in the levels of ADP, ATP, NADP(+), NADPH and 41 metabolites upon illumination were also quantified. RESULTS: Upon illumination, while the transcription of the genes encoded by the plastid genome did not change significantly, the transcription of nuclear genes encoding different functional complexes in the photosystem are differentially regulated whereas members of the same complex are co-regulated with each other. The abundance of mRNAs and proteins encoded by all three genomes are, however, not always positively correlated. One such example is the negative correlation between mRNA and protein abundances of the photosystem components, which reflects the importance of post-transcriptional regulation in plant physiology. CONCLUSION: This study provides systems-wide datasets which allow plant researchers to examine the changes in leaf transcriptomes, proteomes and key metabolites upon illumination and to determine whether there are any correlations between changes in transcript and protein abundances of a particular gene or pathway upon illumination. The integration of data of the organelles and the photosystems, Calvin-Benson cycle, carbohydrate metabolism, glycolysis, the tricarboxylic acid cycle and respiratory chain, thereby provides a more complete picture to the changes in plant physiology upon illumination than has been attained to date.published_or_final_versio
    corecore