77,823 research outputs found
Recommended from our members
UV-Photolithography Fabrication of Poly-Ethylene Glycol Hydrogels Encapsulated with Hepatocytes
The development of biomanufacturing technologies particularly, layered manufacturing has
advanced cell encapsulation processes in an effort to mimic the cellular microenvironment for invitro studies. This paper illustrates an inexpensive UV-photolithographic method for
encapsulation of human hepatocytes in three dimensional structures using poly-ethylene
diacrylate (PEGDA) hydrogels as candidate substrates. In order to further develop this
technology for layered fabrication, we have quantified the long-term effects of the photo-initiator
concentration and UV light exposure on the metabolic rates of encapsulated human hepatocytes
under a 21 day study. The photoinitator toxicity was observed immediately after polymerization
with no significant cytotoxicity on a long term basis. A cellular viability is examined and
reported for the UV photopolymerization process. Cell phenotype maintenance was observed by
measuring the amount of urea produced over a 1 week time period. This photo encapsulation
process may find use in the fabrication of spatially complex 3D scaffolds for tissue engineering
applications, elucidation of the 3D structure-pharmacokinetic response relationship and the
fabrication of complex multi-compartment liver tissue analog devices for drug screening
applications.Mechanical Engineerin
Recommended from our members
Biomimetic Design and Fabrication of Interior Architecture of Tissue Scaffolds Using Solid Freeform Fabrication
Modeling, design and fabrication of tissue scaffolds with intricate architecture,
porosity and pore size for desired tissue properties presents a challenge in tissue engineering.
This paper will present the details of our development in designing and fabrication of the
interior architecture of scaffolds using a novel design approach. The Interior Architecture
Design (IAD) approach seeks to generate scaffold layered freeform fabrication tool path without
forming complicated 3D CAD scaffold models. This involves: applying the principle of layered
manufacturing to determine the scaffold individual layered process planes and layered contour;
defining the 2D characteristic patterns of the scaffold building blocks (unit cells) to form the
Interior Scaffold Pattern; and the generation of process tool path for freeform fabrication of
these scaffolds with the specified interior architecture. Feasibility studies applying the IAD
algorithm to example models and the generation of fabrication planning instructions will be
presented.Mechanical Engineerin
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
Binomial coefficients, Catalan numbers and Lucas quotients
Let be an odd prime and let be integers with and . In this paper we determine
mod for ; for example,
where is the Jacobi symbol, and is the Lucas
sequence given by , and for
. As an application, we determine modulo for any integer , where denotes the
Catalan number . We also pose some related conjectures.Comment: 24 pages. Correct few typo
On the asymptotics of dimers on tori
We study asymptotics of the dimer model on large toric graphs. Let be a weighted -periodic planar graph, and let
be a large-index sublattice of . For bipartite we
show that the dimer partition function on the quotient
has the asymptotic expansion , where is the area of ,
is the free energy density in the bulk, and is a finite-size
correction term depending only on the conformal shape of the domain together
with some parity-type information. Assuming a conjectural condition on the zero
locus of the dimer characteristic polynomial, we show that an analogous
expansion holds for non-bipartite. The functional form of the
finite-size correction differs between the two classes, but is universal within
each class. Our calculations yield new information concerning the distribution
of the number of loops winding around the torus in the associated double-dimer
models.Comment: 48 pages, 18 figure
Proportional hazards models with continuous marks
For time-to-event data with finitely many competing risks, the proportional
hazards model has been a popular tool for relating the cause-specific outcomes
to covariates [Prentice et al. Biometrics 34 (1978) 541--554]. This article
studies an extension of this approach to allow a continuum of competing risks,
in which the cause of failure is replaced by a continuous mark only observed at
the failure time. We develop inference for the proportional hazards model in
which the regression parameters depend nonparametrically on the mark and the
baseline hazard depends nonparametrically on both time and mark. This work is
motivated by the need to assess HIV vaccine efficacy, while taking into account
the genetic divergence of infecting HIV viruses in trial participants from the
HIV strain that is contained in the vaccine, and adjusting for covariate
effects. Mark-specific vaccine efficacy is expressed in terms of one of the
regression functions in the mark-specific proportional hazards model. The new
approach is evaluated in simulations and applied to the first HIV vaccine
efficacy trial.Comment: Published in at http://dx.doi.org/10.1214/07-AOS554 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Radio continuum and polarization study of SNR G57.2+0.8 associated with magnetar SGR1935+2154
We present a radio continuum and linear polarization study of the Galactic
supernova remnant G57.2+0.8, which may host the recently discovered magnetar
SGR1935+2154. The radio SNR shows the typical radio continuum spectrum of a
mature supernova remnant with a spectral index of and
moderate polarized intensity. Magnetic field vectors indicate a tangential
magnetic field, expected for an evolved SNR, in one part of the SNR and a
radial magnetic field in the other. The latter can be explained by an
overlapping arc-like feature, perhaps a pulsar wind nebula, emanating from the
magnetar. The presence of a pulsar wind nebula is supported by the low average
braking index of 1.2, we extrapolated for the magnetar, and the detection of
diffuse X-ray emission around it. We found a distance of 12.5 kpc for the SNR,
which identifies G57.2+0.8 as a resident of the Outer spiral arm of the Milky
Way. The SNR has a radius of about 20 pc and could be as old as 41,000 years.
The SNR has already entered the radiative or pressure-driven snowplow phase of
its evolution. We compared independently determined characteristics like age
and distance for both, the SNR and SGR1935+2154, and conclude that they are
physically related.Comment: accepted by The Astrophysical Journal, 16 pages, 10 figure
- …