The development of biomanufacturing technologies particularly, layered manufacturing has
advanced cell encapsulation processes in an effort to mimic the cellular microenvironment for invitro studies. This paper illustrates an inexpensive UV-photolithographic method for
encapsulation of human hepatocytes in three dimensional structures using poly-ethylene
diacrylate (PEGDA) hydrogels as candidate substrates. In order to further develop this
technology for layered fabrication, we have quantified the long-term effects of the photo-initiator
concentration and UV light exposure on the metabolic rates of encapsulated human hepatocytes
under a 21 day study. The photoinitator toxicity was observed immediately after polymerization
with no significant cytotoxicity on a long term basis. A cellular viability is examined and
reported for the UV photopolymerization process. Cell phenotype maintenance was observed by
measuring the amount of urea produced over a 1 week time period. This photo encapsulation
process may find use in the fabrication of spatially complex 3D scaffolds for tissue engineering
applications, elucidation of the 3D structure-pharmacokinetic response relationship and the
fabrication of complex multi-compartment liver tissue analog devices for drug screening
applications.Mechanical Engineerin