1,590 research outputs found

    Control of welding residual stress for dissimilar laser welded materials

    Get PDF
    The most common problem of welding dissimilar metals (DMWs) with respect to residual stresses is the differences in the coefficient of thermal expansion and heat conductivity of the two welded metals. In the present work, a CO2 continuous laser welding process was successfully applied and optimized for joining a dissimilar AISI 316 stainless steel and low carbon steel plates. The Taguchi approach with three factors (selected welding parameters) at five levels each (L3-25) was applied to find out the optimum levels of welding speed, laser power and focal position for CO2 keyhole laser welding of dissimilar butt weld. The responses outputs were the residual stresses at different depth in the heat affected zone (HAZ). The Hole-Drilling Method technique was applied to measure the residual stress of dissimilar welded components. The results were analysed using analysis of variances (ANOVA) and signal-to-noise ratios (S/N) for an effective parameters combination. Statistical models were developed to describe the influence of the input parameters on the residual stress at different specimen levels; to predict there value within the limits of the variables under investigation. The result indicates that the developed models can predict the responses satisfactorily

    A middleware for a large array of cameras

    Get PDF
    Large arrays of cameras are increasingly being employed for producing high quality image sequences needed for motion analysis research. This leads to the logistical problem with coordination and control of a large number of cameras. In this paper, we used a lightweight multi-agent system for coordinating such camera arrays. The agent framework provides more than a remote sensor access API. It allows reconfigurable and transparent access to cameras, as well as software agents capable of intelligent processing. Furthermore, it eases maintenance by encouraging code reuse. Additionally, our agent system includes an automatic discovery mechanism at startup, and multiple language bindings. Performance tests showed the lightweight nature of the framework while validating its correctness and scalability. Two different camera agents were implemented to provide access to a large array of distributed cameras. Correct operation of these camera agents was confirmed via several image processing agents

    Anemia Prevalence among Pregnant Women and Birth Weight in Five Areas in China

    Get PDF
    Objectives: To investigate the current prevalence of anemia among pregnant women in different areas of China and the association with birth weight and educational level. Methods: A total of 6,413 women aged 24-37 in the third trimester of pregnancy from five areas were randomly selected from all gravidas who gave birth in the hospitals from 1999 to 2003. Blood hemoglobin concentration (Hb) was measured by the cyanomethemoglobin method; Hb <110 g/l was considered as anemia. Results: The overall prevalence of anemia was 58.6%, ranging from 48.1 to 70.5% in the five areas. There was a significant difference in the prevalence of anemia between women who have mental jobs and those who have physical jobs (52.3 vs. 61.1%, p <0.01). The prevalence of anemia depended on the level of education: with 52.9, 62.4 and 66.5%, for college, secondary school and primary education, respectively, and the difference was statistically significant (p = 0.005). Results showed that higher birth weight was associated with Hb concentrations ranging from 90 to 140 g/l, whereas lower birth weight occurred below 80 g/l and above 140 g/l Hb. Conclusions: The prevalence of anemia in Chinese pregnant women was high both in rural areas and towns. Area of residence, education level and type of job influenced the prevalence of anemia. Low maternal Hb concentrations influenced birth weight

    Superconducting Order Parameter in Bi-Layer Cuprates: Occurrence of π\pi Phase Shifts in Corner Junctions

    Full text link
    We study the order parameter symmetry in bi-layer cuprates such as YBaCuO, where interesting π\pi phase shifts have been observed in Josephson junctions. Taking models which represent the measured spin fluctuation spectra of this cuprate, as well as more general models of Coulomb correlation effects, we classify the allowed symmetries and determine their associated physical properties. π\pi phase shifts are shown to be a general consequence of repulsive interactions, independent of whether a magnetic mechanism is operative. While it is known to occur in d-states, this behavior can also be associated with (orthorhombic) s-symmetry when the two sub-band gaps have opposite phase. Implications for the magnitude of TcT_c are discussed.Comment: 5 pages, RevTeX 3.0, 9 figures (available upon request

    Optimization of tensile strength of ferritic / austenitic laser welded components

    Get PDF
    Ferritic/Austenitic (F/A) joints are a popular dissimilar metals combination used in many applications. F/A joints are usually produced using conventional processes. Laser beam welding (LBW) has recently been successfully used for the production of F/A joints with suitable mechanical properties. In this study, a statistical design of experiment (DOE) was used to optimise selected laser beam welding parameters (laser power, welding speed, and focus length). The Taguchi approach was used for the selected factors, each having five levels (L-25; 5*3). Joint strength was determined using the notched tension strength (NTS) method. The results were analysed using analyses of variance (ANOVA) and the signal-to-noise ratios (S/N) ratio for the optimal parameters, and then compared with the base material. The experimental results indicate that the F/A laser welded joints are improved effectively by optimizing the input parameters using the Taguchi approach

    Surfactant effects in monodisperse magnetite nanoparticles of controlled size

    Full text link
    Monodisperse magnetite Fe3O4 nanoparticles of controlled size within 6 and 20 nm in diameter were synthesized by thermal decomposition of an iron organic precursor in an organic medium. Particles were coated with oleic acid. For all samples studied, saturation magnetization Ms reaches the expected value for bulk magnetite, in contrast to results in small particle systems for which Ms is usually much smaller due to surface spin disorder. The coercive field for the 6 nm particles is also similar to that of bulk magnetite. Both results suggest that the oleic acid molecules covalently bonded to the nanoparticle surface yield a strong reduction in the surface spin disorder. However, although the saturated state may be similar, the approach to saturation is different and, in particular, the high-field differential susceptibility is one order of magnitude larger than in bulk materials. The relevance of these results in biomedical applications is discussed.Comment: 3 pages, 3 figures. Presented at JEMS 2006 (San Sebastian, Spain). Submitted to JMM

    Phase transition from a dx2−y2d_{x^2-y^2} to dx2−y2+dxyd_{x^2-y^2}+d_{xy} superconductor

    Full text link
    We study the phase transition from a dx2−y2d_{x^2-y^2} to dx2−y2+dxyd_{x^2-y^2}+d_{xy} superconductor using the tight-binding model of two-dimensional cuprates. As the temperature is lowered past the critical temperature TcT_c, first a dx2−y2 d_{x^2-y^2} superconducting phase is created. With further reduction of temperature, the dx2−y2+dxy d_{x^2-y^2}+d_{xy} phase is created at temperature T=Tc1T=T_{c1}. We study the temperature dependencies of the order parameter, specific heat and spin susceptibility in these mixed-angular-momentum states on square lattice and on a lattice with orthorhombic distortion. The above-mentioned phase transitions are identified by two jumps in specific heat at TcT_c and Tc1T_{c1}.Comment: Latex file, 5 pages, 6 postscript figures, Accepted in Physical Review

    Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBa2_2Cu3_3O7−ή_{7-\delta}

    Full text link
    Motivated by recent angle-resolved photoemission spectroscopy (ARPES) measurement that superconducting YBa2_2Cu3_3O7−ή_{7-\delta} (YBCO) exhibits a dx2−y2+sd_{x^2-y^2} + s-symmetry gap, we show possible quasi-one-dimensional modulations of local density of states in YBCO. These aniostropic gap and defect induced stripe structures are most conspicuous at higher biases and arise due to the nesting effect associated with a Fermi liquid. Observation of these spectra by scanning tunneling microscopy (STM) would unify the picture among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure

    Current driven switching of magnetic layers

    Full text link
    The switching of magnetic layers is studied under the action of a spin current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin valve. We find that the main contribution to the switching comes from the non-equilibrium exchange interaction between the ferromagnetic layers. This interaction defines the magnetic configuration of the layers with minimum energy and establishes the threshold for a critical switching current. Depending on the direction of the critical current, the interaction changes sign and a given magnetic configuration becomes unstable. To model the time dependence of the switching process, we derive a set of coupled Landau-Lifshitz equations for the ferromagnetic layers. Higher order terms in the non-equilibrium exchange coupling allow the system to evolve to its steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.
    • 

    corecore