7,868 research outputs found
Association of SOX11 Polymorphisms in distal 3 ' UTR with Susceptibility for Schizophrenia
Background Diverse and circumstantial evidence suggests that schizophrenia is a neurodevelopmental disorder. Genes contributing to neurodevelopment may be potential candidates for schizophrenia. The human SOX11 gene is a member of the developmentally essential SOX (Sry-related HMG box) transcription factor gene family and mapped to chromosome 2p, a potential candidate region for schizophrenia. Methods Our previous genome-wide association study (GWAS) implicated an involvement of SOX11 with schizophrenia in a Chinese Han population. To further investigate the association between SOX11 polymorphisms and schizophrenia, we performed an independent replication case-control association study in a sample including 768 cases and 1348 controls. Results After Bonferroni correction, four SNPs in SOX11 distal 3 ' UTR significantly associated with schizophrenia in the allele frequencies: rs16864067 (allelic P = .0022), rs12478711 (allelic P = .0009), rs2564045 (allelic P = .0027), and rs2252087 (allelic P = .0025). The haplotype analysis of the selected SNPs showed different haplotype frequencies for two blocks (rs4371338-rs7596062-rs16864067-rs12478711 and rs2564045-rs2252087-rs2564055-rs1366733) between cases and controls. Further luciferase assay and electrophoretic mobility shift assay (EMSA) revealed the schizophrenia-associated SOX11 SNPs may influence SOX11 gene expression, and the risk and non-risk alleles may have different affinity to certain transcription factors and can recruit divergent factors. Conclusions Our results suggest SOX11 as a susceptibility gene for schizophrenia, and SOX11 polymorphisms and haplotypes in the distal 3 ' UTR of the gene might modulate transcriptional activity by serving as cis-regulatory elements and recruiting transcriptional activators or repressors. Also, these SNPs may potentiate as diagnostic markers for the disease
4-(2,4-Dichlorophenyl)-5,5-dimethyl-2-(3-silatranylpropylmino)-1,3,2-dioxaphosphorinane 2-oxide
In the title compound, C20H31Cl2N2O6PSi, the dioxaphosphorinane ring adopts a cis conformation. The silatrane fragment forms a cage-like structure in which there exists an intramolecular Si—N donor–acceptor bond. In the crystal, centrosymmetrically related molecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers, generating rings with graph-set motif R
2
2(8). The dimers are further connected into ribbons parallel to the a axis by intermolecular C—H⋯O hydrogen bonds
Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion
AbstractThousands of genes have been well demonstrated to play important roles in cancer progression. As genes do not function in isolation, they can be grouped into “networks” based on their interactions. In this study, we discover a network regulating Claudin-4 in gastric cancer. We observe that Claudin-4 is up-regulated in gastric cancer and is associated with poor prognosis. Claudin-4 reinforce proliferation, invasion, and EMT in AGS, HGC-27, and SGC-7901 cells, which could be reversed by miR-596 and miR-3620-3p. In addition, lncRNA-KRTAP5-AS1 and lncRNA-TUBB2A could act as competing endogenous RNAs to affect the function of Claudin-4. Our results suggest that non-coding RNAs play important roles in the regulatory network of Claudin-4. As such, non-coding RNAs should be considered as potential biomarkers and therapeutic targets against gastric cancer.</jats:p
Near-Term Quantum Computing Techniques: Variational Quantum Algorithms, Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation
Quantum computing is a game-changing technology for global academia, research
centers and industries including computational science, mathematics, finance,
pharmaceutical, materials science, chemistry and cryptography. Although it has
seen a major boost in the last decade, we are still a long way from reaching
the maturity of a full-fledged quantum computer. That said, we will be in the
Noisy-Intermediate Scale Quantum (NISQ) era for a long time, working on dozens
or even thousands of qubits quantum computing systems. An outstanding
challenge, then, is to come up with an application that can reliably carry out
a nontrivial task of interest on the near-term quantum devices with
non-negligible quantum noise. To address this challenge, several near-term
quantum computing techniques, including variational quantum algorithms, error
mitigation, quantum circuit compilation and benchmarking protocols, have been
proposed to characterize and mitigate errors, and to implement algorithms with
a certain resistance to noise, so as to enhance the capabilities of near-term
quantum devices and explore the boundaries of their ability to realize useful
applications. Besides, the development of near-term quantum devices is
inseparable from the efficient classical simulation, which plays a vital role
in quantum algorithm design and verification, error-tolerant verification and
other applications. This review will provide a thorough introduction of these
near-term quantum computing techniques, report on their progress, and finally
discuss the future prospect of these techniques, which we hope will motivate
researchers to undertake additional studies in this field.Comment: Please feel free to email He-Liang Huang with any comments,
questions, suggestions or concern
Which is better for gastric cancer patients, perioperative or adjuvant chemotherapy: a meta-analysis
meta-analysis of chemotherapy adverse effects. (A) Nausea and vomit, (B) gastrointestinal problem, (C) liver toxicity, (D) neurologic effects, (E) leukopenia, (F) thrombocytopenia, (G) neutropenia. (TIF 507Â kb
Simultaneous compression of the passively mode-locked pulsewidth and pulse train
Simultaneous compression of the passively mode-locked pulse width and pulse train have been achieved by using a plano-convex unstable resonator hybrided by a nonlinear Sagnac ring interferometer. The greater than 30 mJ single pulse energy of a lone oscillator and less than or equal to 10 ps pulsewidth have been obtained. Using this system, the LAGEOS and ETALON satellites' laser ranging have been performed successfully
- …