4,533 research outputs found

    Extraordinary focusing of sound above a soda can array without time reversal

    Get PDF
    Recently, Lemoult et al. [Phys. Rev. Lett. 107, 064301 (2011)] used time reversal to focus sound above an array of soda cans into a spot much smaller than the acoustic wavelength in air. In this study, we show that equally sharp focusing can be achieved without time reversal, by arranging transducers around a nearly circular array of soda cans. The size of the focal spot at the center of the array is made progressively smaller as the frequency approaches the Helmholtz resonance frequency of a can from below, and, near the resonance, becomes smaller than the size of a single can. We show that the locally resonant metamaterial formed by soda cans supports a guided wave at frequencies below the Helmholtz resonance frequency. The small focal spot results from a small wavelength of this guided wave near the resonance in combination with a near field effect making the acoustic field concentrate at the opening of a can. The focusing is achieved with propagating rather than evanescent waves. No sub-diffraction-limited focusing is observed if the diffraction limit is defined with respect to the wavelength of the guided mode in the metamaterial medium rather than the wavelength of the bulk wave in air

    Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity

    Get PDF
    The effects of exogenous spermidine (Spd, 1 mmol·L-1) on photosynthetic characteristics, xanthophylls cycle components and endogenous polyamines levels were investigated in cucumber seedlings subjected to salt stress (75 mmol·L-1 NaCl). Chlorophyll contents and net photosynthetic rate (PN) of cucumber seedlings showed a significant decrease under salinity but an increase with exogenous Spd application. Salt stress caused a remarkable decline in the maximum quantum efficiency (Fv/Fm) and the actual efficiency of photosystem II (ФPSⅡ), where an increase was observed in the constitutive loss processes (ΦNO). Application of exogenous Spd significantly decreased ФNO and enhanced regulated non-photochemical energy loss (ФNPQ) in the salt-stressed plants. Spd treatment caused an increase in the size of xanthophyll cycle pool (VAZ) and further enhanced de-epoxidation of the xanthophyll cycle (DEPS) under salt stress. These results suggest that exogenous Spd alleviated salt-mediated decline in photosynthetic efficiency through the enhanced involvement of the energy dissipation that is dependent on the xanthophyll cycle. In addition, foliar spray Spd significantly increased the free, bound and conjugated polyamines in the leaves of the salt stressed plants. Spd also increased the free putrescine (Put)/(Spd+Spm) ratio and decreased bound and conjugated Put/(Spd+Spm) under salinity. Thus, we conclude that Spd can alleviate salt-induced damage on cucumber seedlings by regulating the levels of endogenous polyamines, which was associated with an improvement in the photochemical efficiency of PSII of the salt stressed plants.Key words: Cucumber, endogenous polyamines, photosynthetic characteristics, salt stress, spermidine

    Effects of DNMT1 silencing on malignant phenotype and methylated gene expression in cervical cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation has been widely used in classification, early diagnosis, therapy and prediction of metastasis as well as recurrence of cervical cancer. DNMT methyltransferase 1 (DNMT1), which plays a significant role in maintaining DNA methylation status and regulating the expression of tumor suppressor genes. The aim of this research was to investigate the relationship between DNMT1 and abnormal methylation of tumor suppressor genes and malignant phenotype in cervical cancer.</p> <p>Methods</p> <p>Levels of DNMT1 mRNA and protein were detected using qPCR and Western blot, respectively. Cell proliferation was analyzed by MTT and apoptosis was performed by Annexin V-FITC/PI double staining flow cytometry, respectively. MeDIP-qPCR and qPCR were performed to measure demethylation status and mRNA re-expression level of 7 tumor-suppressor genes (CCNA1, CHFR, FHIT, PAX1, PTEN, SFRP4, TSLC1) in Hela and Siha cells after silencing DNMT1.</p> <p>Results</p> <p>The average expression levels of DNMT1 mRNA and protein in Hela and Siha cells were decreased significantly compared with control group. The flow cytometry and MTT results showed that Hela and Siha cells apoptosis rates and cell viabilities were 19.4 ± 2.90%, 25.7 ± 3.92% as well as 86.7 ± 3.12%, 84.16 ± 2.67% respectively 48 h after transfection (<it>P </it>< 0.01). Furthermore, the promoter methylation of five tumor suppressor genes was decreased with the increased mRNA expression after silencing DNMT1, whereas there were no significant changes in PTEN and FHIT genes in Hela cells, and CHFR and FHIT genes in Siha cells.</p> <p>Conclusions</p> <p>Our experimental results demonstrate that methylation status of DNMT1 can influence several important tumor suppressor genes activity in cervical tumorigenesis and may have the potential to become an effective target for treatment of cervical cancer.</p

    Effect of process parameters on the force parameters in warm skew rolling of copper ball

    Get PDF
    In order to better control the forming quality of copper ball by warm skew rolling process, a Finite Element Model (FEM) of copper ball warm skew rolling for the coupling of thermal and mechanical was established. The influence of process parameters on force and rolling torque was analyzed by using single factor research method. The results show that the smaller the cross angle, the lower the rolling temperature, the slower the rolling rotation speed, the greater the forming force and rolling torque, the more difficult for forming. The optimum rolling temperature is 600 °C; the optimum cross angle is 2,5°; the optimum rolling rotation speed is 60 rpm

    Value of reduced glomerular filtration rate assessment with cardiometabolic index: insights from a population-based Chinese cohort

    Full text link
    Abstract Background Recent studies have suggested that cardiometabolic index (CMI), a novel estimate of visceral adipose tissue, could be of use in the evaluation of cardiovascular risk factors. However, the potential utility and clinical significance of CMI in the detection of reduced estimated glomerular filtration rate (eGFR) remains uncertain. The purpose of this study was to investigate the usefulness of CMI in assessing reduced eGFR in the general Chinese population. Methods This cross-sectional analysis included 11,578 participants (mean age: 53.8 years, 53.7% females) from Northeast China Rural Cardiovascular Health Study (NCRCHS) of general Chinese population (data collected from January 2013 to August 2013). CMI was calculated by triglyceride to high density lipoprotein cholesterol ratio multiply waist-to-height ratio. Reduced eGFR was defined as eGFR< 60 ml/min per 1.73m2. Multivariate regressions were performed to determine CMI’s association with eGFR value and eGFR reduction, ROC analyses were employed to investigate CMI’s discriminating ability for decreased eGFR. Results The prevalence of reduced eGFR was 1.7% in males and 2.5% in females. CMI was notably more adverse in reduced eGFR groups, regardless of genders. In fully adjusted multivariate linear models, each 1 SD increment of CMI caused 3.150 ml/min per 1.73m2 and 2.411 ml/min per 1.73m2 loss of eGFR before CMI reached 1.210 and 1.520 in males and females, respectively. In logistic regression analyses, per 1 SD increase of CMI brought 51.6% additional risk of reduced eGFR in males while caused 1.347 times of risk in females. After divided into quartiles, people in the top quartile of CMI had higher adjusted ORs of having reduced eGFR, with ORs of 4.227 (1.681, 10.627) and 3.442 (1.685–7.031) for males and females respectively. AUC of CMI was revealed to be 0.633 (0.620–0.646) in males and 0.684 (0.672–0.695) in females. Conclusions Higher CMI was independently associated with greater burden of reduced eGFR, highlighting VAT distribution and dysfunction as a potential mechanism underlying the association of obesity with kidney damage and adverse cardiovascular outcomes. The findings from this study provided important insights regarding the potential usefulness and clinical relevance of CMI in the detection of reduced eGFR among general Chinese population.https://deepblue.lib.umich.edu/bitstream/2027.42/146138/1/12882_2018_Article_1098.pd
    corecore