163 research outputs found
Petrophysics of fine-grained mass-transport deposits: a critical review
Submarine slope failures and their products occur at variable scales on continental margins and island flanks. Here, we review the petrophysics of fine-grained mass-transport deposits (MTDs) from three representative regions: the Ulleung Basin from offshore Korea, the Ursa Region in the Gulf of Mexico, and the Amazon Fan in the Equatorial Brazil. This study shows that fine-grained MTDs comprise a âmain bodyâ and a âbasal shear zoneâ. Compared to undeformed âbackgroundâ hemipelagic sediments, the main bodies of all studied MTDs are characterised by their: (1) higher resistivity, density, velocity and shear strength, and (2) lower water content, porosity and permeability. These properties indicate that MTDs are more consolidated than âbackgroundâ undeformed strata due marked dewatering and shear compaction during their emplacement, thus enhancing the sealing competence of such strata. However, the basal shear zones show contrasting petrophysical trends, recording an increase in porosity when compared to the main MTD bodies. This suggests that the fractured basal shear zones of MTDs serve as main fluid paths, and fluids can accumulate within or laterally migrate along them. This study ends by postulating that dipping strata on continental slopes can likely fail under its own gravity, with fractured, gas-charged basal shear zones at the base of MTDs comprising weak layers for further slope instability
Free gas accumulations in basal shear zones of mass-transport deposits (Pearl River Mouth Basin, South China Sea): An important geohazard on continental slope basins
Free gas is an important trigger of instability on continental slopes, and resulting mass-wasting strata can potentially form competent seals to hydrocarbon accumulations. This work uses two high-quality 3D seismic volumes to investigate fluid accumulations at the base of mass-transport deposits in the Pearl River Mouth Basin, South China Sea. In parallel, IODP/ODP borehole data are used to document the petrophysical character of mass-transport deposits formed in similar continental-slope environments to the South China Sea. The interpreted data show gas accumulations as comprising enhanced seismic reflections that are discordant, or vertically stacked, below mass-transport deposits with chaotic seismic facies. Gas was accumulated in basal shear zones of mass-transport deposits in response to differences in capillary pressure and porosity. Free gas in Zone A covers an area of at least 18 km2. In Zone B, the free gas is sub-circular in plan view and covers an area of 30.58 km2 for a volume of sediment approaching 1.5 km3. This work is important as it shows that vertical migration of gas is not significant in mass-transport deposits from the Pearl River Mouth Basin, but up-dip migration along their basal shear zones is suggested in multiple locations. As a result, free gas can pinch-out laterally to extend 1â2 km beyond these same basal shear zones. As a corollary, we show that free gas accumulations below mass-transport deposits comprise an important geohazard and should be taken into account when drilling continental-slope successions in both the South China Sea and continental margins recording important mass wasting. Strata charged with free gas form weak layers, hinting at a novel trigger of retrogressive slope failures on continental slopes worldwide
Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)
Three-dimensional (3D) seismic, borehole and geochemical data reveal a prolonged phase of post-rift magmatism on highly extended crust of the Baiyun Sag, South China Sea. Two volcanic complexes are identified and described in the context of continental rifting and diachronous continental breakup of the South China Sea. Biostratigraphic data from exploration wells BY7-1 and BY2, complemented by KâAr datings from core samples, confirm that magmatic activity in the Baiyun Sag occurred in two main stages: (1) a first episode at the base of the Miocene (23.8 Ma); and (2) a second episode occurring at the end of the Early Miocene (17.6 Ma). The relative location of volcanic complexes in the Baiyun Sag, and their stratigraphic position, reveals prolonged magmatism inboard of the oceanâcontinent transition zone during continental breakup. We suggest that magmatism in the Baiyun Sag reflects progressive continental breakup in the South China Sea, with the last volcanic episode marking the end of a breakup sequence representing the early post-rift tectonic events associated with the continental breakup process. Seismic and borehole data from this breakup sequence records diachronous magma emplacement and complex changes in depositional environments during continental breakup
Genomic insights into the taxonomic status of the Bacillus cereus group
The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19â20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments
Methylmalonic acid levels in serum, exosomes, and urine and its association with cblC type methylmalonic acidemia-induced cognitive impairment
BackgroundThe cblC type methylmalonic acidemia is the most common methylmalonic acidemia (MMA) in China. The biochemical characteristics of this disease include elevated methylmalonic acid and homocysteine (HCY), increased propionylcarnitine (C3), decreased free carnitine (C0). In this study, we aimed to clarify the roles of these biomarkers in cblC-MMA induced cognitive impairment and evaluate the capacity of methylmalonic acid in different fluids or exosomes to distinguish cblC-MMA induced cognitive impairment.Methods15 non-inherited hyperhomocysteinemia (HHcy) patients, 42 cblC-MMA patients and 57 age- and sex-matched healthy children were recruited in this study. The levels of HCY were detected by an automatic immune analyzer. The levels of acylcarnitines and methylmalonic acid were detected by tandem mass spectrometer.ResultsThe main findings were all biomarkers as HCY, acylcarnitines and methylmalonic acid had capacities for distinguishing patients with cblC-MMA induced cognitive impairment from healthy children. The methylmalonic acid in different fluids or exosomes had good performances for distinguishing patients with cblC-MMA induced cognitive impairment from HHcy patients. The methylmalonic acid in serum exosomes and neuronal-derived exosomes were able to distinguishing cblC-MMA patients with cognitive impairment from patients without cognitive impairment. The methylmalonic acid in neuronal-derived exosomes might be helpful to evaluate the severity of cblC-MMA induced cognitive impairment.DiscussionMethylmalonic acid levels in serum exosomes, especially in serum neuronal-derived exosomes, serve as potential biomarkers for distinguishing cblC-MMA induced cognitive impairment
Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change
Abstract: Pre-Holocene landslides and tsunami deposits are commonly observed on continental margins and oceanic islands. However, scarce evidence has thus far linked pre-historic submarine landslides to particular tsunami events. This work focuses on an 839 km3 submarine landslide that occurred in the South China Sea at 0.54 Ma. Bathymetric restorations show that the paleoshoreline at 0.54 Ma was 180â580 km to the south of its present-day location. In such a setting, the tsunami triggered by the landslide at 0.54 Ma was able to generate larger waves with shorter arrive times when compared to an equivalent landslide-generated tsunami under present-day conditions. This observation proves that tsunamis generated by submarine landslides during sea-level lowstands caused catastrophic damage to the South China Sea coast in the past, and so will do in future sea-level lowstands. This study stresses the importance of restoring paleoshorelines for detailed analysis of historic landslide-generated tsunamis
True volumes of slope failure estimated from a Quaternary mass-transport deposit in the northern South China Sea
Submarine slope failure can mobilize large amounts of seafloor sediment, as shown in varied offshore locations around the world. Submarine landslide volumes are usually estimated by mapping their tops and bases on seismic data. However, two essential components of the total volume of failed sediments are overlooked in most estimates: a) the volume of sub-seismic turbidites generated during slope failure and b) the volume of shear compaction occurring during the emplacement of failed sediment. In this study, the true volume of a large submarine landslide in the northern South China Sea is estimated using seismic, multibeam bathymetry and ODP/IODP well data. The submarine landslide was evacuated on the continental slope and deposited in an ocean basin connected to the slope through a narrow moat. This particular character of the sea floor provides an opportunity to estimate the amount of strata remobilized by slope instability. The imaged volume of the studied landslide is ~1035±64 km3, ~406±28 km3 on the slope and ~629±36 km3 in the ocean basin. The volume of sub-seismic turbidites is ~86 km3 (median value) and the volume of shear compaction is ~100 km3, which are ~8.6% and ~9.7% of the landslide volume imaged on seismic data, respectively. This study highlights that the original volume of the failed sediments is significantly larger than that estimated using seismic and bathymetric data. Volume loss related to the generation of landslide-related turbidites and shear compaction must be considered when estimating the total volume of failed strata in the submarine realm
Methylation of the KEAP1 gene promoter region in human colorectal cancer
<p>Abstract</p> <p>Background</p> <p>The Keap1-Nrf2 pathway has been reported to be impaired in several cancers. However, the status of Keap1-Nrf2 system in human colorectal cancer (CRC) has not been elucidated.</p> <p>Methods</p> <p>We used colorectal cancer (CRC) cell lines and surgical specimens to investigate the methylation status of the <it>KEAP1 </it>promoter region as well as expression of Nrf2 and its downstream antioxidative stress genes, <it>NQO-1 </it>and <it>AKR1C1</it>.</p> <p>Results</p> <p>DNA sequencing analysis indicated that all mutations detected were synonymous, with no amino acid substitutions. We showed by bisulfite genomic sequencing and methylation-specific PCR that eight of 10 CRC cell lines had hypermethylated CpG islands in the <it>KEAP1 </it>promoter region. HT29 cells with a hypermethylated <it>KEAP1 </it>promoter resulted in decreased mRNA and protein expression but unmethylated Colo320DM cells showed higher expression levels. In addition, treatment with the DNA methyltransferase inhibitor 5-Aza-dC combined with the histone deacetylase inhibitor trichostatin A (TSA) increased <it>KEAP1 </it>mRNA expression. These result suggested that methylation of the <it>KEAP1 </it>promoter regulates its mRNA level. Time course analysis with the Nrf2-antioxidant response element (ARE) pathway activator t-BHQ treatment showed a rapid response within 24 h. HT29 cells had higher basal expression levels of <it>NQO-1 </it>and <it>AKR1C1 </it>mRNA than Colo320DM cells. Aberrant promoter methylation of <it>KEAP1 </it>was detected in 53% of tumor tissues and 25% of normal mucosae from 40 surgical CRC specimens, indicating that cancerous tissue showed increased methylation of the <it>KEAP1 </it>promoter region, conferring a protective effect against cytotoxic anticancer drugs.</p> <p>Conclusion</p> <p>Hypermethylation of the <it>KEAP1 </it>promoter region suppressed its mRNA expression and increased nuclear Nrf2 and downstream ARE gene expression in CRC cells and tissues.</p
- âŠ