2,669 research outputs found

    Retroperitoneal hemorrhage caused by enoxaparin-induced spontaneous lumbar artery bleeding and treated by transcatheter arterial embolization: a case report

    Get PDF
    Lumbar artery bleeding with retroperitoneal hematoma is an uncommon life-threatening complication secondary to enoxaparin use. We present a case of 73-year-old Chinese woman with acute retroperitoneal hemorrhage one month following hip surgery, due to enoxaparine. Enoxaparin induced hemorrhage caused by spontaneous rupture of lumbar artery was suspected and treated successfully by transcatheter arterial embolization

    Spontaneous regression of advanced hepatocellular carcinoma: a case report

    Get PDF
    Spontaneous regression of advanced hepatocellular carcinoma is extremely rare. A 66-year-old Taiwanese male patient with liver cirrhosis related to chronic hepatitis C presented with hepatocellular carcinoma with portal vein thrombosis. At first, he refused curative therapy, except for silymarin medicine. Spontaneous regression of hepatocellular carcinoma occurred with a decline in tumour size and tumour marker in imaging studies. The patient agreed to undergo surgery approximately 14 months after presentation because of no further decrease in tumour size and an increase in tumour marker in the imaging studies. The resected tumour was hepatocellular carcinoma with portal vein thromboses. Presently, the patient is alive and in good condition without any symptoms or tumour recurrence. We concluded that this was a rare case of spontaneous regression of advanced hepatocellular carcinoma

    Involvement of the nuclear high mobility group B1 peptides released from injured hepatocytes in murine hepatic fibrogenesis

    Get PDF
    AbstractThis study investigated the pro-fibrogenic role of high mobility group box 1 (HMGB1) peptides in liver fibrogenesis. An animal model of carbon tetrachloride (CCl4)-induced liver fibrosis was used to examine the serum HMGB1 levels and its intrahepatic distribution. The increased serum HMGB1 levels were positively correlated with elevation of transforming growth factor-Ī²1 (TGF-Ī²1) and collagen deposition during fibrogenesis. The cytoplasmic distribution of HMGB1 was noted in the parenchymal hepatocytes of fibrotic livers. In vitro studies confirmed that exposure to hydrogen peroxide and CCl4 induced an intracellular mobilization and extracellular release of nuclear HMGB1 peptides in clone-9 and primary hepatocytes, respectively. An uptake of exogenous HMGB1 by hepatic stellate cells (HSCs) T6 cells indicated a possible paracrine action of hepatocytes on HSCs. Moreover, HMGB1 dose-dependently stimulated HSC proliferation, up-regulated de novo synthesis of collagen type I and Ī±-smooth muscle actin (Ī±-SMA), and triggered Smad2 phosphorylation and its nuclear translocation through a TGF-Ī²1-independent mechanism. Blockade with neutralizing antibodies and gene silencing demonstrated the involvement of the receptor for advanced glycation end-products (RAGE), but not toll-like receptor 4, in cellular uptake of HMGB1 and the HMGB1-mediated Smad2 and ERK1/2 phosphorylation as well as Ī±-SMA up-regulation in HSC-T6 cells. Furthermore, anti-RAGE treatment significantly ameliorated CCl4-induced liver fibrosis. In conclusion, the nuclear HMGB1 peptides released from parenchymal hepatocytes during liver injuries may directly activate HSCs through stimulating HSC proliferation and transformation, eventually leading to the fibrotic changes of livers. Blockade of HMGB1/RAGE signaling cascade may constitute a therapeutic strategy for treatment of liver fibrosis

    Automated Facial Recognition for Noonan Syndrome Using Novel Deep Convolutional Neural Network With Additive Angular Margin Loss

    Get PDF
    BackgroundNoonan syndrome (NS), a genetically heterogeneous disorder, presents with hypertelorism, ptosis, dysplastic pulmonary valve stenosis, hypertrophic cardiomyopathy, and small stature. Early detection and assessment of NS are crucial to formulating an individualized treatment protocol. However, the diagnostic rate of pediatricians and pediatric cardiologists is limited. To overcome this challenge, we propose an automated facial recognition model to identify NS using a novel deep convolutional neural network (DCNN) with a loss function called additive angular margin loss (ArcFace).MethodsThe proposed automated facial recognition models were trained on dataset that included 127 NS patients, 163 healthy children, and 130 children with several other dysmorphic syndromes. The photo dataset contained only one frontal face image from each participant. A novel DCNN framework with ArcFace loss function (DCNN-Arcface model) was constructed. Two traditional machine learning models and a DCNN model with cross-entropy loss function (DCNN-CE model) were also constructed. Transfer learning and data augmentation were applied in the training process. The identification performance of facial recognition models was assessed by five-fold cross-validation. Comparison of the DCNN-Arcface model to two traditional machine learning models, the DCNN-CE model, and six physicians were performed.ResultsAt distinguishing NS patients from healthy children, the DCNN-Arcface model achieved an accuracy of 0.9201 Ā± 0.0138 and an area under the receiver operator characteristic curve (AUC) of 0.9797 Ā± 0.0055. At distinguishing NS patients from children with several other genetic syndromes, it achieved an accuracy of 0.8171 Ā± 0.0074 and an AUC of 0.9274 Ā± 0.0062. In both cases, the DCNN-Arcface model outperformed the two traditional machine learning models, the DCNN-CE model, and six physicians.ConclusionThis study shows that the proposed DCNN-Arcface model is a promising way to screen NS patients and can improve the NS diagnosis rate

    The cortical regions and white matter tracts underlying auditory comprehension in patients with primary brain tumor

    Get PDF
    The comprehension of spoken language is one of the most essential language functions in humans. However, the neurological underpinnings of auditory comprehension remain under debate. Here we used multi-modal neuroimaging analyses on a group of patients with low-grade gliomas to localize cortical regions and white matter tracts responsible for auditory language comprehension. Region-of-interests and voxel-level whole-brain analyses showed that cortical areas in the posterior temporal lobe are crucial for language comprehension. The fiber integrity assessed with diffusion tensor imaging of the arcuate fasciculus and the inferior longitudinal fasciculus was strongly correlated with both auditory comprehension and the grey matter volume of the inferior temporal and middle temporal gyri. Together, our findings provide direct evidence for an integrated network of auditory comprehension whereby the superior temporal gyrus and sulcus, the posterior parts of the middle and inferior temporal gyri serve as auditory comprehension cortex, and the arcuate fasciculus and the inferior longitudinal fasciculus subserve as crucial structural connectivity. These findings provide critical evidence on the neural underpinnings of language comprehension
    • ā€¦
    corecore