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This study investigated the pro-fibrogenic role of high mobility group box 1 (HMGB1) peptides in liver
fibrogenesis. An animal model of carbon tetrachloride (CCl4)-induced liver fibrosis was used to examine the
serum HMGB1 levels and its intrahepatic distribution. The increased serum HMGB1 levels were positively corre-
latedwith elevation of transforming growth factor-β1 (TGF-β1) and collagen deposition during fibrogenesis. The
cytoplasmic distribution of HMGB1 was noted in the parenchymal hepatocytes of fibrotic livers. In vitro studies
confirmed that exposure to hydrogen peroxide and CCl4 induced an intracellular mobilization and extracellular
release of nuclear HMGB1 peptides in clone-9 and primary hepatocytes, respectively. An uptake of exogenous
HMGB1 by hepatic stellate cells (HSCs) T6 cells indicated a possible paracrine action of hepatocytes on HSCs.
Moreover, HMGB1 dose-dependently stimulated HSC proliferation, up-regulated de novo synthesis of collagen
type I and α-smooth muscle actin (α-SMA), and triggered Smad2 phosphorylation and its nuclear translocation
through a TGF-β1-independent mechanism. Blockade with neutralizing antibodies and gene silencing demon-
strated the involvement of the receptor for advanced glycation end-products (RAGE), but not toll-like receptor
4, in cellular uptake of HMGB1 and the HMGB1-mediated Smad2 and ERK1/2 phosphorylation as well as α-
SMA up-regulation in HSC-T6 cells. Furthermore, anti-RAGE treatment significantly ameliorated CCl4-induced
liver fibrosis. In conclusion, the nuclear HMGB1 peptides released from parenchymal hepatocytes during liver
injuriesmay directly activate HSCs through stimulating HSC proliferation and transformation, eventually leading
to the fibrotic changes of livers. Blockade of HMGB1/RAGE signaling cascade may constitute a therapeutic
strategy for treatment of liver fibrosis.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The progression of liver fibrosis has been considered as a complex
process of wound healing in response to a variety of chronic stimuli
[1,2] and is characterized by an excessive deposition of extracellular
matrix (ECM) proteins, primarily the fibrillar collagens including
type I collagen [2,3]. Being the primary hepatic cellular component re-
sponsible for excessive collagen synthesis during hepatic fibrosis [4],
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hepatic stellate cells (HSCs) undergo a complex transformation or acti-
vation process following liver injury and thereby change from a quies-
cent to an activated, myofibroblast-like phenotype [2,5]. The changes
accompanying HSC activation encompass the increases in DNA synthe-
sis, cellular proliferation, ECM production as well as morphological
transformation, including the appearance of cytoskeletal protein α-
smooth muscle actin (α-SMA). Among the reported HSC activators,
transforming growth factor-β1 (TGF-β1) is the key cytokine mediator
markedly up-regulated during hepatic fibrogenesis. Through activation
of type I TGF-β receptor, the post-receptor signal transducers, Smad2
and Smad3, are phosphorylated. The phosphorylation of Smad2 and
Smad3 results in the formation of a stable complex with Smad4, which
translocates into the nuclei to act as transcriptional regulators. In addition
to the canonical Smad pathway, TGF-β1 also activates different members
of themitogen-activated protein kinase (MAPK) family in HSCs, including
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p38 MAPK, extracellular signal-regulated kinase (ERK), and c-Jun
N-terminal kinase (JNK) [6–9].

High mobility group box 1 (HMGB1) is originally identified as a nu-
clear non-histoneDNA-binding protein that functions as a structural co-
factor critical for proper transcriptional regulation in somatic cells. With
moderate affinity but without sequence specificity, HMGB1 binds to the
minor groove of linear DNA and bends it into a helical structure in the
nucleus, hereby interacting with and recruiting various transcription
factors [10]. The pathogenetic role and regulatory function of extracellu-
lar HMGB1have long been discussed in the development ofmany organ
diseases involving immune dysfunctions. Nuclear HMGB1 actively se-
creted from innate immune cells could act as an indicator for the extent
of tissue injury and as an immunostimulatory signal to enhance other
cytokine expression, promote the recruitment of mononuclear cells to
clear cellular debris, and protect against possible infection that often
follows trauma [11,12]. The active and passive release of HMGB1 from
hepatocytes has been previously noted in the hepatocytes under ische-
mic and reperfusion stimuli [13,14]. AlthoughHMGB1 induces a distinct
pattern of gene expression compared to bacterial endotoxin [15],
the high levels of circulating HMGB1 in patients with infectious and
inflammatory disorders are significantly correlated with poor disease
prognosis including infectious and sterile inflammation and, hence,
also regarded as a therapeutic target [16–20].

Despite the extracellular release of HMGB1 peptides has been impli-
cated in the pathogenesis of hepatic and retinal ischemia/reperfusion
injury [13,14,21] and pulmonary fibrosis [22], the role of HMGB1 in he-
patic fibrogenesis has not been clearly defined. This study, therefore,
aimed to determine the role of HMGB1 during the development of
liver fibrosis by examining its serum profile and intrahepatic distribu-
tion pattern in a murine model of carbon tetrachloride (CCl4)-induced
liver fibrosis. Meanwhile, primary hepatocytes and HSC-T6 cells were
used to elucidate the interactive mechanism in determining whether
the HMGB1 released from injured hepatocytes might exhibit
fibroproliferative and transforming effects on HSCs via the canonical
TGF-β receptor-Smad and relevant non-canonical signaling pathways.
Additionally, an immunological blockade of HMGB1 signaling axis was
performed to determine the prophylactic efficacy in CCl4-induced
murine liver fibrosis.

2. Materials and methods

2.1. Reagents

Recombinant HMGB1 peptides and monoclonal antibodies against
HMGB1, α-SMA and type I collagen α1 (COL1A1) were purchased
from Sigma-Aldrich Chemicals (St. Louis, MA). Endotoxin level in work-
ing solution with recombinant HMGB1 protein was less than 0.25 EU
determined by an LAL-based endotoxin test kit (Pierce Thermo,
Rockford, IL). Antibodies against phosphor-Smad2 (Ser465/467), Akt,
phosphor-Akt (Ser473), ERK1/2, phosphor-ERK1/2 (Thr185/Tyr187),
JNK, phosphor-JNK (Thy183/Tyr185), p38 MAPK, phosphor-p38 MAPK
(Thy180/Tyr182), and acetylated lysine were from Cell Signaling
(Beverly, MA), while those against 4-hydroxynonenal (4-HNE) and 8-
hydroxydeoxyguanosine (8-OHdG) were from Millipore (Temecula,
CA). Those antibodies against Smad2 and Actin were from Santa Cruz
(Santa Cruz, CA), while secondary HRP-conjugated ones were from
Jackson ImmunoResearch Laboratories (West Grove, PA). Neutralizing
antibodies for blocking ligand interaction of toll-like receptor 4 (TLR4)
and the receptor for advanced glycation end-products (RAGE) were
from eBioscience (San Diego, CA) and R&D Systems (Minneapolis,
MN), respectively.

2.2. Animal model of liver fibrosis

Six to eight week-old male ICRmice were raised at 20–22 °C with
12 h light–dark cycle. All animal experimental procedureswere approved
by the Institute of Animal Care and Use Committees at Kaohsiung
Chang GungMemorial Hospital and EDA Hospital. Liver fibrosis was in-
duced by subcutaneous CCl4 administration at a dose of 1 mL/kg (1:1
mixture with mineral oil) twice a week for 5 consecutive weeks [23].
For a time-course observation, serum samples and liver tissues were
collected at 18 and 35 days after initiation of CCl4 injection. For a pro-
phylactic anti-RAGE therapy, an isotype-matched control IgG (Jackson
ImmunoResearch Lab, West Grove, PA) and an anti-RAGE neutralizing
antibody (R&D Systems) were intraperitoneally administrated twice
weekly at dose of 10 μg per mouse (average dose 283 μg/kg body
weight), starting after 1 week of CCl4 injection. Sera and liver tissues
were collected at 35 days after initiation of CCl4 injection. All sera
were subjected to biochemical measurement as previously described
[23].

2.3. ELISA

Mouse sera were subjected to ELISA using the kits for HMGB1
(Shino-Test Corporation, Kanagawa, Japan) and TGF-β1 (Biosource,
Camarillo, CA) according to the manufacturers' protocols.

2.4. Histopathology, immunohistochemistry (IHC), Sirius red staining and
morphometry

Formalin-fixed paraffin-embedded sections were prepared and
processed for H&E, IHC, and Sirius red staining as previously described
[23].For morphometrical observation, cytoplasmic location of HMGB1
in liver parenchymawas counted on at least 8 randomhigh power fields
per section and expressed as positive percentage per high power field.
Collagen deposition in Sirius red-stained sections was measured using
automatic thresholding function of ImageJ software (W.S. Rasband,
NIH, Bethesda, Maryland, USA) and data are shown as percentage of
total scanned area.

2.5. Cell culture

Primary hepatocytes were isolated from SD rats and maintained as
previously described [23]. A rat hepatocyte cell line (Clone-9) and a
rat HSC cell line (HSC-T6)were grown in F12K andWaymountmedium
(Sigma), respectively, supplemented with 10% heat-inactivated FBS,
penicillin and streptomycin (Invitrogen, Grand Island, NY). Cells were
incubated at 37 ºC in a humidified atmosphere of 5% CO2 in air, and
the medium was renewed twice a week. Before experiment, cells
were trypsinized and plated on 3.5 cm diameter dishes or 96-well
microplates.

2.6. Cell proliferation and BrdU assays

Tomeasure cell proliferation, HSC-T6 cellswere seeded onto 96-well
plates at the density of 4 × 103 per well 24 h before experiment. After
being treated with recombinant HMGB1 at different concentrations
for 24 h, a commercially available MTS proliferation assay kit (Promega,
Madison, WI) was used as described previously [24]. Alternatively,
HMGB1-treated cells were subjected to a cell-based BrdU proliferation
assay (Roche Applied Science, Penzberg, Germany) according to
manufacturer's instruction. The optical densities in both assays were
colorimetrically measured by a microplate reader (MRX II, Dynex
technologies, Chantilly, VA) and normalized to control level, which is
considered as 100% of viability.

2.7. Immunofluorescent staining

Subcellular localization of HMGB1 and Smad2 proteins was identi-
fied by using immunofluorescent staining. Culture cells were seeded
onto sterile glass coverslip (2× 105 cells per slip) and fixed immediately
in ice-cold methanol after drug treatment. After washes with PBS, the
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cells were permeabilized with 0.5% Triton X-100 in PBS for 10 min, and
blocked with blocking reagent (DAKO) for 30 min. Then the slips were
incubated for 60 min at room temperature with primary antibodies
against either HMGB1, poly-His tag (R&D Systems, Minneapolis, MN),
or Smad2. Subsequently, the bound signal was visualized by Alexa
Fluor 488- or 594-conjugated anti-rabbit antibody (Molecular Probe,
Eugene, OR). Nuclei were counterstained with 2 μg/mL of Hoechst
33342 (Molecular Probe).
2.8. Quantitative PCR (qPCR)

Total RNAwas extracted from culturedHSCs using the TriZol reagent
(Invitrogen, Carlsbad, CA) according to the manufacturer's protocol.
After spectrophotometrical quantification, 2 μg of total RNA was used
for reverse transcription reaction, followed by conventional and qPCR
analyses using gene-specific primers for β-actin, TGF-β1, COL1A1, and
α-SMA (shown in Supplemental Table S1). After qPCR amplification, a
final melting curve protocol was performed to confirm the PCR specific-
ity. Gene expression levels were normalized to β-actin reference gene.
2.9. Western blot and immunoprecipitation (IP) detection

Total proteins were extracted by lysing the cells in ice-cold RIPA
buffer in the presence of phosphatase inhibitors (1mM sodium fluoride
and 1 mM sodium orthovanadate) and a cocktail of protease inhibitors
(Roche Molecular Biochemicals, Mannheim, Germany). Protein content
was quantified using a Coomassie protein assay kit (Pierce Biotechnolo-
gy, Rockford, IL, USA) and equal amounts of protein were resolved in
reducing SDS-PAGE and subsequent immunoblotting detection as
previously described [23].

Rabbit antibodies against HMGB1 (Santa Cruz Biotechnology) and
acetylated lysine residues (Cell Signaling Biotechnology) were used to
specifically immunoprecipitate HMGB1 or acetylated proteins in sera.
About 500 μl of pooled mouse sera was first precleared by 30min of in-
cubationwith preclearingmatix (Santa Cruz Biotechnology) at 4 °C, and
then were incubated overnight at 4 °C with 5 μg of antibody and 50 μl
protein A-Sepharose slurry on a rotator for overnight. After incubation
and centrifugation, supernatants were aspirated and discarded. The
beads were washed five times with PBS, resuspended in 50 μl of reduc-
ing electrophoresis buffer, and subjected to immunoblot detection.
2.10. RNA interference of TLR4 and RAGE

To discriminate the role of TLR4 and RAGE in HMGB1-activated sig-
naling and HSC activation, HSC-T6 cells were transfected with either
rat-specific TLR4, RAGE small interfering RNA (siRNA), or scramble
RNA control (Santa Cruz) at 100 nM with Lipofectamine 2000
(Invitrogen, Grand Island, NY). After verifying the silencing efficiency
after 48 h of siRNA transfection by Western blot, the cells received
HMGB1 stimulation for indicated duration and were subjected to
immunoblot detection as described above.
2.11. Statistical analysis

Spearman's rank correlation analysis was used to determine the
dependence between plasma HMGB1 and TGF-β1 levels. In vivo and
in vitro data were presented as mean ± standard error of mean
(SEM) and mean± standard deviation (SD), respectively. Comparative
in vitro datawere presented asnormalized values of 1.0 in negative con-
trols. Multiple comparisons among groups were done by one-way
ANOVA followed by a Bonferroni post hoc test. Significance is declared
when P value is less than 0.05.
3. Results

3.1. Elevation of serum HMGB1and its correlation with liver fibrogenesis in
mice

Subcutaneous administration of CCl4 was performed to induce liver
fibrosis in ICRmice. A time-course biochemical observation confirmed in-
jured hepatic functions including elevation of serum AST and ALT levels
(Fig. 1A). To determine the involvement of HMGB1 in the pathogenesis
of liver fibrosis, the mouse sera were collected for measurement of
HMGB1 and TGF-β1 by ELISA. Although serum HMGB1 levels in normal
mice were not detectable (i.e. b1 ng/mL), the concentrations were
remarkably increased to 110.2 ± 10.3 and 128.5 1 ± 6.2 ng/mL after 18
and 35 days of CCl4 treatment, respectively (Fig. 1B). Immunoblotting de-
tection qualitatively identified the presence of a 29 kDpeptide identical to
HMGB1 in the sera of these animals with fibrotic livers (Fig. S1). To inves-
tigate the relationship between HMGB1 elevation and liver fibrosis,
serumTGF-β1 levelsweremeasured using ELISAmethod. TGF-β1, as a re-
liablemarker for liver fibrosis, was reproducibly increased along with the
progression of CCl4-induced liver fibrosis (Fig. 1C). Simple linear regres-
sion and Spearman's rank correlation analyses further indicated a positive
correlation between serum levels of HMGB1 and TGF-β1 (Fig. 1D). More-
over, histological observation by H&E staining showed deterioration of
hepatic microarchitecture (Fig. 1E). Sirius red stain revealed prominent
deposition of collagen fibers (Fig. 1F) and further morphometrical analy-
sis demonstrated significantly aggravated collagen deposition in livers
(Fig. 1G). Correlation analysis again indicated a close relationship
between the HMGB1 elevation and the severity of liver fibrosis (Fig. 1H).

3.2. Redistribution of nuclear HMGB1 into cytoplasm of hepatocytes in
fibrotic livers

To examine the cellular localization of HMGB1 peptides in liver
tissues before and after fibrosis induction, IHC staining for HMGB1
was performed to further delineate the possible pathogenetic role of
HMGB1. The immunoreactivity of HMGB1 peptides was present in and
strictly confined to the nuclei of hepatocytes and those of residing cellu-
lar components in the normal livers (Fig. 2A). After 18 days of CCl4 ad-
ministration, the nuclear size of parenchymal hepatocytes partially
became enlarged possibly due to liver parenchymal damage (Fig. 2B)
and the abundance of nuclear HMGB1 peptides obviously increased.
The nuclear pattern of signals in smaller size indicated infiltrated in-
flammatory cells or activated sinusoidal endothelial cells and HSCs.
After 35 days of treatment with CCl4, a diffused pattern of HMGB1 was
remarkably observed along with sinusoidal location and a cytoplasmic
pattern of HMGB1was notablymanifested in few of parenchymal hepa-
tocytes around the central vein area (Fig. 2C). Quantitative analysis on
the cytoplasmic location of HMGB1 under high power field showed an
average of 3.5% positivity in fibrotic livers at day 35. Since active extra-
cellular transport of HMGB1 from hepatocytes has been known to be
regulated by its posttranslational acetylation [25], IP detection with
the sera of CCl4-treated mice demonstrated a remarkably increased
acetylation of MHGB1 (Fig. 2D), indirectly supporting the extracellular
release of HMGB1 from parenchymal hepatocytes. These findings sug-
gest that nuclear HMGB1 peptides were relocated from nucleus to cyto-
plasm and eventually released from the injured parenchymal cells of
fibrotic livers. This result implies that the release of nuclear HMGB1
peptides likely contributes to the elevated serum HMGB1 levels and
that it may in turn activate HSCs intrahepatically in a paracrinemanner,
thereby promoting the progression of liver fibrosis.

3.3. Release of HMGB1 from hepatocytes under chemical and oxidative
stresses in vitro

Given the importance of oxidative stress in liver fibrogenesis, we
next simulated the in vivo oxidative and chemical insults and examined



A B C D

(n=6)
NC Day18 Day35

A
ST

 (U
/L

)

0

50

100

150

200

250

(n=6) (n=6)
CCl4

*

NC Day18 Day35

A
LT

 (U
/L

)

0

50

100

150

200

250

(n=6) (n=6) (n=6)
CCl4

*

*

CCl4

NC Day18 Day35

H
M

G
B

1 
(n

g/
m

l)

0

50

100

150

200

N.D.

(n=6) (n=6) (n=6)

P < 0.05

CCl4

NC Day18 Day35

TG
F-

 
1 

(p
g/

m
l)

400

600

800

1000

1200

1400

(n=6) (n=6) (n=6)

P < 0.01   P < 0.01

HMGB1 (ng/ml)
40 60 80 100 120 140 160

TG
F-

 
1 

(p
g/

m
l)

600

700

800

900

1000

1100

1200

1300

1400 R = 0.641
P < 0.001

E G

F H

C
ol

la
ge

n 
de

po
si

tio
n

(%
 o

f t
ot

al
 a

re
a)

0

1

2

3

4

NC Day18 Day35

CCl4

**

(n=6) (n=6) (n=6)

**

HMGB1 (ng/ml)
40 60 80 100 120 140 160

C
ol

la
ge

n 
de

po
si

tio
n

(%
 o

f t
ot

al
 a

re
a)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 R = 0.8111
P = 0.0014

Fig. 1. Correlation of serumHMGB1 elevationwith severity of liver fibrosis in themicewith CCl4 administration. Serawere collected from normal ICRmice and those treatedwith CCl4 administration after 18 and 35 days and subjected to biochemical
detection for liver function integrity, including AST and ALT (A). SerumHMGB1 (B) and TGF-β1 (C) levels were determined by using ELISA. N.D., not detectable. (D) Spearman's rank correlation analysis showed a positive correlation between serum
HMGB1 and TGF-β1 levels in the mice receiving CCl4 administration. Formalin-fixed and paraffin-embedded liver tissues were sectioned and followed by histopathological examinations, including H&E (E) and Sirius red (F) stains. Morphometrical
analysis revealed increased collagen deposition in fibrotic livers (G), which positively correlated with serum HMGB1 levels (H). Data are expressed as mean ± SEM. *P b 0.05; **P b 0.01 vs. negative control using one-way ANOVA.

1723
Y.-H

.Kao
etal./Biochim

ica
etBiophysica

A
cta

1842
(2014)

1720
–1732



A B

C D

IP: Ac-Lysine 

N
or

m
al

CC
l 4

HMGB1

Input: 
Serum IgG

Ac-Lysine 

IP: Mouse IgG

IP: HMGB1

HMGB1

Heavy chain

Light chain

IB:

Normal Day 18

Day 35

CV 

PT 

CV 

Fig. 2. Abnormal cytoplasmic localization of nuclear HMGB1 peptides in fibrotic livers and increased acetylation of HMGB1 peptides in sera of mice with CCl4 administration. Immunohis-
tochemistry showing nuclear localization of HMGB1 in normal mice liver (A). The abnormal subcellular distribution of HMGB1 in fibrotic mouse livers after 18 (B) and 35 (C) days of CCl4
administration. Arrows indicate the cytoplasmic localization of HMGB1. CV, central vein; PT, portal triad. Scale bar, 100 μm. (D) Sera collected fromnormalmice (n=4) and from themice
with CCl4 administration for 35 days (n = 4) were subjected to immunoprecipitation detection by using antibodies against acetylated lysine residues, HMGB1 peptides, or isotype-
matched mouse IgG, followed by immunoblotting visualization. Serum IgG was regarded as input control.

1724 Y.-H. Kao et al. / Biochimica et Biophysica Acta 1842 (2014) 1720–1732
their in vitro outcomes. Cell viability assay characterized the cytotoxicity
of hydrogen peroxide (H2O2) and CCl4 in cultured clone-9 hepatocytes.
H2O2 and CCl4 at doses higher than 250 μM (Fig. 3A) and 10 mM
(Fig. 3B), respectively, exhibited significant cytotoxicity. Annexin V and
PI staining followed by flow cytometry assay showed remarkable induc-
tion of apoptosis and necrosis by both insults (Fig. 3C).Western blot dem-
onstrated that CCl4 treatment also generated intracellular oxidative stress
as reflected by formation of 4-HNE and 8-OHdG adducts (Fig. 3D). Since
H2O2 is previously demonstrated to induce active release of HMGB1
from innate immune cells [26] and hepatocytes [13], we sought to deter-
mine whether oxidative stress induces extracellular HMGB1 release;
clone-9 cellswere treatedwithH2O2 at 400 μM.Western blotting showed
that nuclear HMGB1 peptides remarkably emerged in conditionedmedia
of clone-9 hepatocytes after 12 h of H2O2 treatment, while HMGB1 con-
tents in lysates significantly decreased after 72 h treatment (Fig. 3E).
Meanwhile, the mobilization of HMGB1 from nucleus to cytoplasm was
alsonoted in the clone-9 cells treatedwithH2O2 byusing immunofluores-
cent staining of HMGB1 (Fig. S2). The cytoplasmic redistribution of
HMGB1 was confirmed again in the primary hepatocytes (Fig. 3F) and
clone-9 cells (Fig. S3) with chemical insult of CCl4 for 24 h.

3.4. Uptake of exogenous HMGB1 peptides by cultured HSCs

To investigate whether exogenous HMGB1 could be taken up by
HSCs, the recombinant HMGB1 peptides tagged with poly-histidine
were added to the culture medium of HSC-T6 cells. The uptake of
HMGB1 by HSC-T6 cells was first evidenced by immunofluorescent
staining using anti-His tag antibody (Fig. 4A). To better characterize
the time frame of HMGB1 uptake, conditioned media and lysates were
collected for HMGB1 detection usingWestern blot (Fig. 4B). The results
showed that, after 24 h of incubation, the immunoreactivities of both
HMGB1 and His-tagged proteins in cell lysates encompassing both in-
tracellular and cytoplasmic membrane compartments significantly in-
creased, possibly due to its uptake and adherence onto cell surface,
respectively. The cellular uptake of exogenous HMGB1 peaked at
100 ng/mL. Since TLR4 and RAGE are involved in endocytic uptake of
HMGB1 by macrophages [27,28], we next to determine which receptor
is responsible for the observed HMGB1 uptake. Genetic depletion by
siRNA delivery demonstrated that RAGE gene silencing dramatically
abolished the cellular uptake of HMGB1 by HSC-T6 cells (Fig. 4C).
Taken with earlier findings, it raises the possibility that the release of
nuclear HMGB1 protein from the parenchymal hepatocytes under oxi-
dative stress may contribute to activation and/or transformation of
HSCs in a paracrine manner during development of liver fibrosis.

3.5. Fibroproliferative effect of exogenous HMGB1 on cultured HSCs

To study whether HMGB1 contributes to HSC population expansion
during progression of liver fibrosis, exogenous HMGB1 treatment was
used to examine in vitro biological effect. Since posttranslational redox
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state of HMGB1 was recently identified to induce different inflammato-
ry activities in immune cells [29,30], redox status of recombinant
HMGB1 peptides applied in this study was characterized and all-thiol
and dimer forms of HMGB1 peptides were evidenced by reduction
treatment (Fig. S4). After being added into cultured HSC-T6 cells
under 0.5% FBS for 48 h, the HSC growth rate was measured using
MTS- (Fig. 5A) and BrdU-based (Fig. 5B) proliferation assays. Both
results consistently indicated that, similar to the mitogenic effect of
platelet-derived growth factor (PDGF) [8], HMGB1 also exhibited
growth-stimulating effect on HSC-T6 cells. To further determinewheth-
er exogenousHMGB1 treatment affects denovo synthesis ofα-SMAand
COL1A1, cultured HSC-T6 cells were treated with recombinant HMGB1
peptides for 6 h and 24 h, followed by real-time qPCR and Western
blotting detection, respectively. The qPCR data revealed that HMGB1
significantly increased the gene transcript contents of both α-SMA and
COL1A1 in a biphasic bell-shape pattern (Fig. 5C). Consistently, α-SMA
and COL1A1 protein levelswere also up-regulated byHMGB1 treatment
(Fig. 5D). To examine the exogenous effect of HMGB1, ELISA data
indicated that exogenous HMGB1 treatment significantly increased
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and thereafter (Fig. 6B). In comparison, the extent of HMGB1-induced
Smad2 phosphorylation was similar to that induced by TGF-β1
(Fig. 6C). The nuclear translocation of phosphorylated Smad2 elicited
by HMGB1 was confirmed by the shifting of cytoplasmic Smad2 to
nuclear compartment (Fig. 6D). Moreover, the immunofluorescent
staining for the Smad2 subcellular location reconfirmed that the exoge-
nous HMGB1 peptides indeed elicited Smad2 nuclear translocation
(Fig. 6E), suggesting the involvement of the canonical Smad signaling
pathway in the HMGB1-induced HSC activation.

3.7. Involvement of RAGE and ERK1/2 in HMGB1-mediated HSC activation

To further delineate the profiles of HMGB1-activated non-canonical
signaling activities, such as PI3K/Akt and MAPKs, HSC-T6 cells were
treated with recombinant HMGB1 peptides at 10 ng/mL and subjected
toWestern blot detection. The results indicated that HMGB1 significant-
ly triggered ERK1/2 phosphorylation (Fig. 7A, B), although it slightly el-
evated Akt and JNK phosphorylation but did not affect constitutive
phosphorylation levels of p38 MAPK (Fig. S5). Since both TLR4 and
RAGE, twowell-recognized receptors for HMGB1, have been implicated
in the pathogenesis of liver fibrosis [12,31–35], we next sought to dis-
criminate the contribution of TLR4 or RAGE in the HMGB1-elicited
HSC activation and subsequent cellular transformation. Neutralizing
efficiency of antibodies was assured of their blocking effects on
lipopolysaccharide-stimulated TNF-α production in murine Raw264.7
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monocytes (Fig. S6). The functional blockade of TLR4 receptor using
neutralizing antibodies prior to HMGB1 stimulation did not prevent
the Smad2 (Fig. 7C, E) and EKR1/2 hyperphosphorylation (Fig. 7D) as
well as the α-SMA over-expression (Fig. 7F) induced by HMGB1. By
contrast, pretreatment with anti-RAGE antibody completely abolished
the HMGB1-elicited Smad2 and ERK1/2 phosphorylation as well as the
increased expression ofα-SMA (Fig. 7C, D, E, F). To double check the in-
volvement of RAGE-mediated signaling activation, cells received siRNA-
mediated gene silencing of TLR4 or RAGE prior to HMGB1 stimulation
and subjected to immunoblot detection (Fig. 7G). Although delivery of
both TLR4 and RAGE siRNA reduced constitutive ERK1/2 phosphoryla-
tion and α-SMA expression, only genetic depletion of RAGE prevented
the HMGB1-exhibited phosphorylation of Smad2 (Fig. 7H) and ERK1/2
(Fig. 7I) as well as α-SMA up-regulation (Fig. 7J). Taken together,
these findings support that HMGB1 activates HSCs and stimulates
their transformation via a RAGE-mediated and TGF-β1-independent
Smad signaling pathway.

3.8. Amelioration of anti-RAGE in CCl4-induced hepatic fibrogenesis

To evaluate the prophylactic effect of RAGE blockade in CCl4-
induced liver fibrosis, mice received intraperitoneal administration of
an anti-RAGE neutralizing antibody at 1 week after initiation of CCl4 in-
jection. Data of biochemistry, qPCR, and ELISA indicated that anti-RAGE
treatment significantly attenuated the impairment of liver function
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(Fig. 8A), the over-expression of gene markers of liver fibrosis (Fig. 8B),
as well as the elevation of serum TGF-β1 levels (Fig. 8C) in CCl4-treated
mice as compared to isotype-matched IgG control group. Western blot
detection of liver extracts showed that the up-regulated α-SMA and
COL1A1 protein expression and Smad2 phosphorylation were promi-
nently reduced by anti-RAGE administration (Fig. 8D). Results of Sirius
red staining (Fig. 8E) and subsequent morphometrical analysis (Fig. 8F)
clearly demonstrated that functional blockade of RAGE effectively ame-
liorated hepatic collagen deposition during CCl4-induced liver fibrosis.

4. Discussion

The present study provides the first evidence showing a marked el-
evation of serum HMGB1 levels in the mice with liver fibrosis (Fig. 1).
This elevation may be attributed to the extracellular release of endoge-
nous HMGB1 from parenchymal hepatocytes, revealed by the abnormal
cytoplasmic distribution pattern of HMGB1 protein in injured livers
(Fig. 2). In vitro evidence clearly indicated that, under chemical and
oxidative insults, the nuclear HMGB1 peptides in both cultured primary
hepatocytes and clone-9 cells weremobilized to cytoplasm and eventu-
ally released into culture medium (Fig. 3). Besides, HSCs, a pivotal
propellant in the development of liver fibrosis, could uptake the exoge-
nous HMGB1 peptides from extracellular micromilieu (Fig. 4). As a
consequence, HSCs underwent fibroproliferative alterations, including
cell proliferation, COL1A1 overproduction, and α-SMA up-regulation
(Fig. 5). Moreover, exogenous HMGB1 mechanistically triggered
Smad2 phosphorylation and its nuclear translocation in HSCs (Fig. 6).
The HMGB1-elicited signaling involved not only canonical TGF-β
receptor-Smad signaling pathway but also RAGE-ERK cascade (Fig. 7).
Most importantly, anti-RAGE prophylactic treatment significantly ame-
liorated CCl4-induced liver fibrosis (Fig. 8). Therefore, we reasonably
proposed that the nuclearHMGB1peptides released from the parenchy-
ma of injured liver enhance the progression of liver fibrosis through a
paracrine RAGE-mediated HSC-activating mechanism (Fig. 9).

The elevated circulating HMGB1 levels have been demonstrated to
be a late appearing inflammatory cytokines that gives a wider time
frame for clinical intervention against several infectious and inflamma-
tory disorders such as sepsis [16–18]. On the other hand, elevation of
circulating antibodies against HMGB1was reported in patients with au-
toimmune diseases like rheumatoid arthritis [36]. This elevation impli-
cates the emergence of extracellular HMGB1 in local environments,
whichmay provide a milieu for dendritic cell activation andmaturation
and has been considered as amarker for disease severity. Similarly, high
levels of circulating anti-HMGB1 antibodies in post orthotopic liver
transplant patients are closely associated with allograft rejection
and post-transplant liver fibrogenesis [37], also suggesting the pro-
fibrogenic role of HMGB1 in diseased livers. Moreover, the concurrent
elevation of HMGB1 and TGF-β1 in rodent plasma found in this study
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(Fig. 1) also implies amutual regulatorymechanism between these two
factors. This speculation could be at least in part supported by the fact
that exogenous HMGB1 stimulated TGF-β1 production in clone-9 and
HSC-T6 cells (Fig. 5E, F). On the other hand, TGF-β1 and other pro-
inflammatory cytokines such as tumor necrosis factor-α have been
demonstrated to increase HMGB1 expression and secretion by macro-
phages [12,38,39]. Whether these cytokines are also critical upstream
regulators for HMGB1production and/or release in hepatocytes remains
further elucidation.
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HSCs

GE

The activation events include:
i) RAGE-mediated ERK1/2 

and Smad2 activation
ii) Cell proliferation
iii) ECM overproduction
iv) α-SMA expression

Myofibroblasts

patocytes. When the liver encounters the insults from hepatotoxic chemicals or oxidative
nment as an alarmin. This released HMGB1 molecule may, in a paracrine manner, trigger
-dependent Smad2 and EKR1/2 phosphorylation. Under exposure to HMGB1, HSCs altered
formation into myofibroblasts.
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and COL1A1 expression (Fig. 5), consistent to the previous report
showing that HMGB1 promotes proliferation and migration of HSCs
[43]. Additionally, we previously reported that exogenous HMGB1
peptides remarkably decreased gelatinolytic activity of MMP-2 in
cultured HSC-T6 cells, which also implicates its tissue remodeling ca-
pacity in livers [44]. On the other hand, HMGB1 siRNA treatment
suppressed synthesis of α-SMA and collagen types I and III in HSC-
T6 cells [45], supporting its pro-fibrogenic role in liver fibrosis. Due
to the fact that HMGB1 functionally possesses binding ability to ei-
ther TLR2, TLR4, or RAGE [12], the pro-fibrogenic effect of HMGB1
has been mechanistically linked to the signaling activities driven by
multiple cognate receptors. Controversially, the HMGB1-elicited
HSC activation evidently involves the signal pathways mediated
not only by TLR4 [33,43,46] but also RAGE [8,34,47].

In the context of the HSC activation governed by TGF-β-elicited
signaling, Lindert et al. [48] reported that the phenotypic changes of
transdifferentiating HSCs (i.e., α-SMA expression) and the ECM over-
production are two independent processes, while the latter could be
stimulated by both Smad-dependent and MAPK-dependent TGF-β1
signaling. Since TGF-β1 canonical Smad and non-canonical p38 MAPK
are two important intracellular signaling pathways governing pro-
inflammatory cytokine production and ECM biosysnthesis, the cross-
talk between MAPK- and Smad-mediated signaling pathways has
been known to enhance TGF-β-dependent responses in mesangial
cells [49] and carcinogenesis [50]. In fact, the HMGB1-triggered p38
MAPK activation in rodent macrophages [51] and human neutrophils
[52] has been demonstrated to be primarily mediated through the
RAGE pathway. Other lines of evidence indicate that the HMGB1/RAGE
signaling axis plays an important role in lung fibrogenesis [22,31]. The
data in the present study support that HMGB1 triggers a TGF-β-
independent Smad2 phosphorylation, its subsequent nuclear transloca-
tion (Fig. 6), and a concomitant ERK1/2 activation (Fig. 7). Consistent to
our findings, the RAGE-driven ERK1/2-dependent Smad2/3 phosphory-
lation has been manifested not only in HSCs [8], but also in liver
myofibroblasts [7] and kidney tubular epithelial cells [53]. Our data
further support the notion that the HMGB-driven α-SMA upregula-
tion in cultured HSCs was RAGE-dependent and involved ERK activ-
ity (Fig. 7). Supportively, the higher and restrictive expression of
RAGE on the HSCs of fibrotic liver highlights the association of exog-
enous HMGB1 peptides with the HSC activation and its subsequent
transition to myofibroblasts [54]. These findings suggest that exoge-
nous HMGB1 peptides might convey activating signal via the RAGE
on HSCs. Moreover, recent evidence indicated that HMGB1 acts
through RAGE and triggers dynamin-dependent signaling and
subsequent HMGB1 endocytosis, which eventually results in cell
pyroptosis of macrophages [28]. Consistent with our data showing
the RAGE-dependent cellular uptake of HMGB1 by HSC-T6 cells
(Fig. 4C) and based on the effectiveness of prophylactic anti-RAGE
therapy (Fig. 8), the mechanism of RAGE-mediate HMGB1 endocyto-
sis may play an important role in the HSC activation and the
pathogenesis of liver fibrosis. However, this issue awaits further
clarification in the future.

In conclusion, this study demonstrated extracellular release of nu-
clear HMGB1 peptides from the parenchymal cells of the experimental-
ly induced fibrotic livers. The release of HMGB1 peptides from injured
tissues not only modulates immune responsiveness, but also partici-
pates in tissue remodeling and fibrogenesis. A paracrine action of the
soluble HMGB1 peptides between hepatocytes and HSCs, at least in
part, contributes to the development of liver fibrosis mainly through
activating a TGF-β1-independent pro-fibrogenic signal pathway in
HSCs, including RAGE/ERK-mediated Smad2 cascade. Blockade of
the bioavailability of extracellular HMGB1 and downstream RAGE-
mediated signaling in targeted cells may constitute a therapeutic
strategy for the treatment of liver fibrosis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.06.017.
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