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Background: Noonan syndrome (NS), a genetically heterogeneous disorder,
presents with hypertelorism, ptosis, dysplastic pulmonary valve stenosis, hypertrophic
cardiomyopathy, and small stature. Early detection and assessment of NS are crucial
to formulating an individualized treatment protocol. However, the diagnostic rate of
pediatricians and pediatric cardiologists is limited. To overcome this challenge, we
propose an automated facial recognition model to identify NS using a novel deep
convolutional neural network (DCNN) with a loss function called additive angular margin
loss (ArcFace).

Methods: The proposed automated facial recognition models were trained on dataset
that included 127 NS patients, 163 healthy children, and 130 children with several other
dysmorphic syndromes. The photo dataset contained only one frontal face image from
each participant. A novel DCNN framework with ArcFace loss function (DCNN-Arcface
model) was constructed. Two traditional machine learning models and a DCNN model
with cross-entropy loss function (DCNN-CE model) were also constructed. Transfer
learning and data augmentation were applied in the training process. The identification
performance of facial recognition models was assessed by five-fold cross-validation.
Comparison of the DCNN-Arcface model to two traditional machine learning models,
the DCNN-CE model, and six physicians were performed.

Results: At distinguishing NS patients from healthy children, the DCNN-Arcface
model achieved an accuracy of 0.9201 ± 0.0138 and an area under the receiver
operator characteristic curve (AUC) of 0.9797 ± 0.0055. At distinguishing NS patients
from children with several other genetic syndromes, it achieved an accuracy of
0.8171 ± 0.0074 and an AUC of 0.9274 ± 0.0062. In both cases, the DCNN-Arcface
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model outperformed the two traditional machine learning models, the DCNN-CE model,
and six physicians.

Conclusion: This study shows that the proposed DCNN-Arcface model is a promising
way to screen NS patients and can improve the NS diagnosis rate.

Keywords: noonan syndrome, facial recognition model, deep learning, Arcface loss function, genetic syndromes

INTRODUCTION

Noonan syndrome (NS) is a genetically heterogeneous disorder
with an estimated prevalence of 1 in 1,000–2,500, caused by
germline mutations in 11 critical genes of the highly conserved
Ras/Mitogen-Activated Protein Kinases (MAPK) pathway
(Mendez and Opitz, 1985; Tajan et al., 2018). This multisystem
disease is characterized by hypertelorism, ptosis, dysplastic
pulmonary valve stenosis, hypertrophic cardiomyopathy, and
small stature (Roberts et al., 2013; Li et al., 2019). Early detection
and assessment of NS are crucial to formulating an individualized
treatment protocol. NS can be diagnosed via clinical features
and genetic testing (Van Der Burgt et al., 1994; Roberts et al.,
2013). However, because of the complexity and rarity of NS,
identifying it remains challenging for pediatric cardiologists
and pediatricians. In the wake of this problem, an efficient and
convenient auxiliary diagnostic approach is needed for the early
diagnosis of NS.

Many genetic syndromes have craniofacial alterations (Hart
and Hart, 2009), and facial appearance can be a momentous
clue in making an early diagnosis of syndromes (Kuru et al.,
2014). The utility of traditional machine learning methods and
deep learning methods for diagnosing NS based on pattern
recognition of face images has been explored previously by
several researchers (Boehringer et al., 2006; Kruszka et al.,
2017; Tekendo-Ngongang and Kruszka, 2020; Porras et al.,
2021). In 2019, Gurovich et al. (2019) presented a deep
DCNN framework, called DeepGestalt, trained on a database
of over 17,000 pictures of faces representing more than 200
genetic syndromes. Gurovich et al. (2019) further applied the
DeepGestalt model to discriminate five different genotypes of NS
and predicted the five desired classes with a top-1 accuracy of
64%. However, to our best knowledge, no studies identified NS
patients from healthy children and from children with several
other genetic syndromes.

In the present study, therefore, we developed an automated
facial recognition model for NS identification based on
state-of-the-art tools in the field of facial recognition: a deep
convolutional neural network (DCNN) and a novel loss
function called Additive Angular Margin Loss (ArcFace; Deng
et al., 2019). The main contributions of this study are the
following: (1) to our knowledge, this is the first attempt at
using a DCNN model with Arcface loss function to generate
an automated facial recognition model (DCNN-Arcface
model) to identify genetic syndromes; (2) the identification
performance of the DCNN-Arcface model outranked two
traditional machine learning models; (3) the identification
performance of the DCNN-Arcface model was superior to

the DCNN framework with cross-entropy loss function (the
DCNN-CE model); (4) the identification performance of
the DCNN-Arcface model outperformed physicians; and
(5) the DCNN-Arcface model can distinguish NS patients
from healthy children and from children with several other
genetic syndromes.

MATERIALS AND METHODS

Dataset
The dataset included 127 NS patients (68 males and 59
females), 163 healthy children, and 130 children with several
other dysmorphic syndromes (see Supplementary Table 1).
The photo dataset contained only one frontal face image from
each participant. Thirty-seven NS patients were recruited from
Guangdong Provincial People’s Hospital, between January 2017
and September 2020. Other NS images were obtained from
the medical literature (Xu et al., 2017; Leung et al., 2018; Li
et al., 2019). The facial characteristics, demographic and genetic
characteristics of the NS datasets are summarized in Figure 1 and
Tables 1, 2.

All face images in this study were required to fulfill two
eligibility criteria. First, the diagnosis of NS and other genetic
syndromes was confirmed by fluorescence in situ hybridization,
karyotype analysis or next-generation sequencing. Second, the
faces should be sufficiently legible and oriented.

The DCNN-Arcface Model
The architecture of the DCNN-Arcface model is illustrated in
Figure 2.

Image Preprocessing
The first step was to detect the patient’s face in an input image.
Here, a multi-task convolutional neural network (MTCNN;
Zhang et al., 2016) was applied to detect face image areas.
It ultimately utilized five facial landmarks (Figure 3). The
MTCNN contained an image pyramid and a three-stage cascaded
framework. When a raw face image was given, different scale
ratios were used to resize the face image to build an image
pyramid. It was then transmitted to the three-stage cascaded
framework as an input. After training on three convolutional
networks [proposal network (P-Net), refine network (R-Net),
and output network (O-Net)], the image pyramid was finally
converted into five facial landmark positions. We subsequently
cropped the face image containing the five facial landmarks
into (3, 112, 112).
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FIGURE 1 | Facial characteristics of NS patients collected from the
Guangdong Provincial People’s Hospital, China (N = 37). The black bar is
used to protect privacy.

Feature Extraction and Image Embedding Using a
Novel Deep Convolutional Neural Network
In this work, we used a novel two-dimension DCNN to
extract face features and then embed the face images in
N-dimensional vector space xn ∈ <

N . The first layer was a
traditional convolution block with a kernel size of 7 × 7,
which was followed by multiple residual blocks (He et al.,
2016) and depth-wise convolution blocks (Bai et al., 2018).
Figure 4 depicts the construction of a single residual block and
depth-wise (Dwise) convolution block. The Dwise convolution
block consisted of three convolutional operations followed
by a nonlinear unit, the Rectified Linear Unit (ReLU). The
construction of the residual block was similar to the Dwise block,
except for the addition of “shortcut connections” to feedforward
neural networks. After multiple layers of feature extraction, we
used a global average pooling layer to flatten the feature maps
followed by a fully connected layer. The input face images were
finally embedded in N-dimension vector space xn ∈ <

N .

Arcface Loss Function
In this work, we used a loss function representing state-of-the-
art in the field of facial recognition, called ArcFace loss function
(Deng et al., 2019). The main idea is based on the observation
that the weight matrix from the last fully connected layer can be
viewed as a combination of vectors that represent the conceptual
centers corresponding to different face classes. In detail, after

TABLE 1 | Demographic and genetic characteristics of Noonan syndrome
patients.

Characteristics Patients collected from
hospital (N = 37)

Patients collected from
medical literature

(N = 90)

Female sex, n (%) 23 (62.1) 36 (40.0)

Age period when face
images were taken, n (%)

Infancy (1–12 months) 12 (32.4) 44 (48.9)

Childhood (1–12 years) 21 (56.8) 43 (47.8)

Adolescence (12–18 years) 4 (10.8) 3 (3.3)

Type of gene mutations, n
(%)

PTPN11 12 (32.4) 47 (52.2)

BRAF 3 (8.1) 2 (2.2)

KRAS 0 (0.0) 13 (14.4)

LZTR1 2 (5.4) 1 (1.1)

RAF1 11 (29.7) 10 (11.1)

RTI1 5 (13.5) 9 (10.0)

NRAS 0 (0.0) 1 (1.1)

SOS1 3 (8.1) 7 (7.8)

SOS2 1 (2.6) 0 (0.0)

TABLE 2 | Pathogenic variants detected in Noonan syndrome patients collected
from the Guangdong Provincial People’s Hospital.

Gene DNA change Protein change Number of times
observed

Origin of
Mutation

PTPN11 c.922A > G p.N308D 3 de novo

c.188A > G p.Y63C 1 de novo

c.124A > G p.T42A 1 de novo

c.1492C > T p.R498W 2 de novo

c.1528C > G p.Q510E 3 de novo

c.1517A > C p.Q506P 1 de novo

c.174C > G p.N58K 1 de novo

BRAF c.1502A > G p.E501G 1 de novo

c.1796C>G p.T599R 1 de novo

c.736G > C p.A246P 1 de novo

LZTR1 c.2098A>G p.M700V 1 de novo

c.1291G > A p.E431K 1 de novo

RAF1 c.770C > T p.S257L 6 de novo

c.775T > A p.S259T 3 de novo

c.1082G > C p.G361A 1 de novo

c.781C > A p.P261T 1 de novo

RIT1 c.170C > G p.A57G 1 de novo

c.229G > A p.A77T 1 de novo

c.284G > C p.G95A 1 de novo

c.246T > A p.F82L 1 de novo

c.270G > C p.M90L 1 de novo

SOS1 c.508A>G p.K170E 1 de novo

c.1654A > G p.R552G 1 de novo

c.2536G > A p.E846K 1 de novo

SOS2 c.1502A > G p.E501G 1 de novo

extracting the embeddings with multiple convolutional layers,
we rescaled the norm of the embedding vector to s, ‖ χn ‖= s,
where xnrepresents the embedding vector of the nth sample.

Frontiers in Genetics | www.frontiersin.org 3 June 2021 | Volume 12 | Article 669841

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-669841 June 29, 2021 Time: 10:15 # 4

Yang et al. Facial Recognition for Noonan Syndrome

FIGURE 2 | Architecture of DCNN-Arcface model for Noonan syndrome identification. We used convolutional layers with stride = 2 instead of max-pooling to half the
feature map size and double channels number. After extracting the embeddings with multiple convolutional layers, we normalized the weights of the last fully
connected layer ‖ Wi ‖= 1 with L2 normalization and rescaled the norm of embedding vector to s, ‖ χn ‖= s. Then, an angular margin penalty m was added to the
target angle θl,m. After that, cos(θl,m +m) was calculated, and all logits were multiplied by the feature scale s. The logits then went through the SoftMax function to
derive the probability for each class. “DW conv” represents depth-wise convolution.

Then, the individual wights of the last fully connected layer were
normalized with L2 normalization, ‖Wi ‖= 1, in which Wi is the
weight of the fully connected layer of class i. Thus, the product
WT

i ∗χn reflected the angle between the embedding vector and
the weight of class i in the fully connected layer.

The loss function was then defined as,

LA = −
∑

n
ωi log

e‖W
T
i ‖‖xn‖cos θi,n∑

j e‖W
T
J ‖‖xn‖cos θj,n

(1)

where ωiis the weight of class i to deal with biased dataset. In our
case, since our dataset has balanced of patient for each class, we
set all ω i as 1.

By minimizing the loss function, embedding vectors for
images within the same class were forced to gather around the
same weight vector in the vector space, which enhanced intra-
class compactness. Moreover, an additive angle margin m was
added to improve the robustness and discrepancy for different
classes, according to Deng et al. (2019).

LA = −
∑

n
ωi log

es∗ cos(θi,n+m)

es∗ cos(θi,n+m) +
∑

j 6=i es∗ cos θj,n
(2)

Mathematically, the positive additive angle decreases the value
of cos (θi, n + m). If we try to maintain the value of the overall
loss function, we can either reduce θi, n or increase θj, n. That is,
we can bring the embedding vector closer to the weight vector of
the same class or further away from other classes.

Setting
We first pre-trained our network on a public human face dataset,
CASIA (Wen et al., 2016), and then retrained the whole network

on the NS identification task. In the training process, we applied
rotation and horizontal flipping to augment the dataset. Each
face image was rotated at angles θ = [90◦, 180◦] and horizontally
flipped. Thus, three face images were generated for each original
face image. We used Adam as our optimizer, and the learning
rate was set to 1e−4. Five-fold cross-validation was performed
to evaluate the performance of DCNN-Arcface model, DCNN-
CE model, and two traditional machine learning models. The
proportion of training set, validation set, and test set was 3:1:1.
For the DCCN-Arcface model, in the testing phase, we calculated
the embeddings for all faces in the training set and derived the
average embedding for each class as a reference vector. We used
the angle between the inference image’s embedding vector and the
reference vector for prediction instead of the weights on the last
fully connected layer (Deng et al., 2019).

Comparative Experiments
In this study, we implemented a DCNN-CE model and
two traditional machine learning models. Comparisons
of the proposed DCNN-Arcface model with these three
models were performed.

Comparison With Traditional Machine Learning
Models
Before the prevalence of deep learning methods, various
supervised machine learning models were used for NS
identification (Boehringer et al., 2006; Kruszka et al., 2017).
Therefore, we applied two supervised traditional machine
learning methods to construct two additional facial recognition
models for NS identification: a support vector machine
(SVM) (SVM-Linear model) and logistic regression (LR) (LR
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FIGURE 3 | Pipeline of the multi-task convolutional neural network (MTCNN).

FIGURE 4 | Illustration of a single depth-wise convolution block and residual
block. (A) The construction of the Depth-wise (Dwise) convolution block
denoting a convolutional layer with a convolution group number set as input
channels. (B) The construction of the residual block. “Linear” means that there
is no use of an activation function.

model). These methods were unable to take image data as
input directly. Therefore, the first step was to extract features
from patients’ faces. We used a landmark detector from the
“dlib” Python library to locate 68 informative points from
each patient’s face, including the outline of the eyebrows,

eyes, nose, mouth, and jaw. The landmark detector was an
implementation of Kazemi and Sullivan (2014), in which an
ensemble of regression trees is trained with manually labeled
data to estimate the coordinates of facial landmarks. Then, two
types of features—shape descriptor features and appearance
descriptor features—were measured based on those landmarks.
We calculated the distances between every two points as the
shape information, although this was more complicated for the
appearance descriptor feature. For each point, we derived the
local binary pattern (LBP) with neighboring sample points set at
12 and the radius set at 4. Thus, we could compute six statistics
for the LBP histogram: the mean, variance, skewness, kurtosis,
energy, and entropy. We found that some landmarks were within
a small area, such that features extracted from those points may
provide redundant information for identification. Therefore,
we selected 38 landmarks for feature measurement. The total
number of features comprised 703 shape descriptor features and
266 appearance descriptor features. The concatenated feature
vectors were then sent to the SVM with a linear kernel and to
LR for NS identification. Feature selection was based on each
feature’s weight in the classification model, and we treated smaller
weights as being less significant to the identification task. We
tried different numbers of features from 10 to 969. We found that
the area under the ROC curve started converging with 400 for
identifying NS patients from healthy children, and 300 features
for identifying NS patients from children with other genetic
syndromes. The detailed architecture is shown in Figure 5.

Comparison With the DCNN-CE Model
Cross-entropy (Rubinstein, 1999) loss function is the most
widely used loss function for classification problems. It can
provide a precise mathematical framework with high speed (Boer
et al., 2005). Hence, we constructed another DCNN-based face
recognition model of NS. The same DCNN framework were
used, but Arcface loss function was substituted by the cross-
entropy loss function.

Comparison With Physicians
In this study, we performed two experiments to determine
the identification performance by six physicians with different
areas of expertise (two pediatricians, two pediatric cardiologists,
and two clinical geneticists). To distinguish NS patients from
healthy children, the physicians were presented with a dataset
consisting of all NS patients and healthy children in random
order. They classified these face images as either NS patients or
healthy children. Likewise, after rearranging all photographs of
the NS patients and those of children with several other genetic
syndromes, the physicians classified these face images as NS
patients or children with several other genetic syndromes. Each
face image was shown for 10 s without exhibiting any clinical
data. The experiments were repeated three times.

Evaluation Metric
The metrics we used to evaluate the identification performance in
all comparative experiments were the total identification accuracy
measure, sensitivity measure, and specificity measure. Moreover,
the area under the receiver operating characteristic curve (AUC)
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FIGURE 5 | Illustration of two traditional machine learning models.

TABLE 3 | The accuracy, specificity, sensitivity, AUC, and AP score of different models at distinguishing Noonan syndrome from healthy children.

models Accuracy (mean ± SD) Specificity (mean ± SD) Sensitivity (mean ± SD) AUC (mean ± SD) AP score (mean ± SD)

DCNN-Arcface 0.9201 ± 0.0138 0.9774 ± 0.0120 0.8381 ± 0.0208 0.9797 ± 0.0055 0.9801 ± 0.0145

DCNN-CE 0.8521 ± 0.0207 0.8744 ± 0.0362 0.8201 ± 0.0072 0.9357 ± 0.0085 0.9267 ± 0.0170

SVM-linear 0.8259 ± 0.0210 0.8343 ± 0.0245 0.8138 ± 0.0170 0.9031 ± 0.0064 0.9020 ± 0.0086

LR 0.7877 ± 0.0109 0.8363 ± 0.0160 0.7184 ± 0.0050 0.8669 ± 0.0035 0.8636 ± 0.0021

Values in bold indicate the optimal performance. SD, standard deviation.

TABLE 4 | The accuracy, specificity, sensitivity, AUC, and AP score of different models at distinguishing Noonan syndrome from patients with several other genetic
syndromes.

models Accuracy(mean ± SD) Specificity(mean ± SD) Sensitivity(mean ± SD) AUC(mean ± SD) AP score(mean ± SD)

DCNN-Arcface 0.8171 ± 0.0074 0.9477 ± 0.0116 0.7794 ± 0.0252 0.9274 ± 0.0062 0.9356 ± 0.0067

DCNN-CE 0.7848 ± 0.0205 0.7907 ± 0.0155 0.6960 ± 0.0207 0.8594 ± 0.0106 0.8739 ± 0.0108

SVM-linear 0.7048 ± 0.0190 0.6982 ± 0.019 0.7112 ± 0.0049 0.7627 ± 0.0161 0.7499 ± 0.0257

LR 0.7210 ± 0.0111 0.7273 ± 0.0407 0.7150 ± 0.0294 0.7694 ± 0.0102 0.7467 ± 0.0025

Values in bold indicate the optimal performance. SD, standard deviation.

and the area under the precision–recall curve (AP scores) were
also determined. These measures were calculated as follows:

Total Accuracy =
TP + TN

Amount of all images

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

where TP, TN, FP, and FN denote true positives, true negatives,
false positives, and false negatives, respectively.

All measurements are reported as the mean ± standard
deviation. These measurements indicated the ability of all
methods to correctly distinguish NS patients from healthy
children and children with several other genetic syndromes.

Statistical Analysis
McNemar’s test was used to determine the disagreement for
binary outputs between DCNN-Arcface model and DCNN-CE
model, DCNN-Arcface model and traditional machine learning
models (Dietterich, 1998). Z-tests were constructed to compare

the AUC and AP scores of DCNN-Arcface model, DCNN-CE
model, and two machine learning models (Zhang et al., 2002).
p-values < 0.05 were considered statistically significant.

RESULTS

Accuracy, Specificity, Sensitivity, AUC,
and AP Score of Different Models
Tables 3, 4 list the accuracy, specificity, sensitivity, AUC, and AP
score of the proposed DCNN-Arcface model, DCNN-CE model,
SVM-linear model, and LR model.

Comparison With Traditional Machine
Learning Models
At distinguishing NS patients from healthy children, the DCNN-
Arcface model achieved the best identification performance
compared with the SVM-Linear model (p = 0.0002, McNemar’s
test) and with the LR model (p = 0.0001, McNemar’s test).
At distinguishing NS patients from children with several
other genetic syndromes, the performance of the DCNN-
Arcface model was also superior to the SVM-Linear model
(p = 0.0001, McNemar’s test) and the LR model (p = 0.0000,
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FIGURE 6 | ROC curves and P–R curves of four different models when distinguishing children with Noonan syndrome from healthy children. The DCNN-Arcface
model is consistently better than the other three.

FIGURE 7 | ROC curves and P–R curves of four different models when distinguishing children with Noonan syndrome from those with several other genetic
syndromes. The DCNN-Arcface model is consistently better than the other three.

McNemar’s test). The ROC curves and precision–recall (P–R)
curves of different models with different tasks are shown in
Figures 6, 7. The highest AUC and AP scores were achieved
by the DCNN-Arcface model on both tasks (p = 0.0000, z-test).
The ROC curves and P–R curves shown in Figures 6, 7
also indicate that the DCNN-Arcface model can significantly
improve the identification performance of an NS facial
recognition model.

Comparion With the DCNN-CE Model
At distinguishing NS patients from healthy children, the
performance of the DCNN-Arcface model outranked the
DCNN-CE model (p = 0.0016, McNemar’s test). At distinguishing
NS patients from children with several other genetic syndromes,
better performance was also obtained from the DCNN-Arcface
model (p = 0.0045, McNemar’s test). Significantly statistical
difference was achieved when compare the AUC and AP score
obtained from the DCNN-Arcface model with that of the DCNN-
CE model (p = 0.0000, z-test). The ROC curves and P–R curves
shown in Figures 6, 7 also elucidated the improved identification

performance of NS facial recognition by applying the DCNN-
Arcface model.

Comparison With Physicians
The identification performance of different physicians for
different tasks is presented in Tables 5, 6. All six physicians
completed the identification tasks, with an average accuracy
of 0.7595 ± 0.0618 for identifying NS patients from healthy
children, and 0.5826 ± 0.0303 for identifying NS patients from
children with several other genetic syndromes. When classifying
the physicians depend on their expertise, the clinical geneticists
exhibited the best identification performance among the
physicians, with the average accuracy of 0.7685 ± 0.1223
for identifying NS patients from healthy children, and
0.6105 ± 0.0106 for identifying NS patients from children
with several other genetic syndromes. However, the DCNN-
Arcface model outperformed all six physicians according to
all metrics on both tasks, including accuracy, specificity, and
sensitivity (Tables 3, 4).
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TABLE 5 | Identification performance of different physicians at distinguishing
Noonan syndrome patients from healthy children.

Levels Accuracy
(mean ± SD)

Specificity
(mean ± SD)

Sensitivity
(mean ± SD)

Pediatrician (N = 2) 0.7515 ± 0.0389 0.7880 ± 0.0212 0.7045 ± 0.1167

Pediatric
cardiologists (N = 2)

0.7585 ± 0.0488 0.8555 ± 0.1690 0.6335 ± 0.3288

Clinical geneticists
(N = 2)

0.7685 ± 0.1223 0.7685 ± 0.1973 0.7750 ± 0.0170

Values in bold indicate the optimal performance. SD, standard deviation.

TABLE 6 | Identification performance of different physicians at distinguishing
Noonan syndrome patients from children with several other genetic syndromes.

Levels Accuracy
(mean ± SD)

Specificity
(mean ± SD)

Sensitivity
(mean ± SD)

Pediatrician (N = 2) 0.5640 ± 0.0382 0.4535 ± 0.0431 0.6770 ± 0.0339

Pediatric
cardiologists (N = 2)

0.5735 ± 0.0247 0.7640 ± 0.2687 0.3855 ± 0.2340

Clinical geneticists
(N = 2)

0.6105 ± 0.0106 0.7460 ± 0.1739 0.4725 ± 0.2001

Values in bold indicate the optimal performance. SD, standard deviation.

DISCUSSION

Distinctive facial appearance provides significant information for
predicting a specific genetic syndrome (Roosenboom et al., 2016).
NS’s facial gestalt usually includes a high forehead, low posterior
hairline, hypertelorism, highly arched palate, downslanting
palpebral fissures, epicantal folds, ptosis, high wide peaks of the
vermilion, deeply grooved philtrum, and low-set and posteriorly
rotated ears (Tartaglia et al., 2011; Li et al., 2019). The diagnosis of
NS could start with astute clinicians recognizing the specific facial
dysmorphism. As they age, however, the faces of children with
NS can become more atypical, as the face lengthens and becomes
more triangular in shape (Allanson, 2016). Some genotypes of NS
present with atypical facial characteristics (Jenkins et al., 2020).
In addition, the facial appearance of NS is similar to that of
other RASopathies, such as Cardio-faciocutaneous and Costello
syndromes (Allanson, 2016). In this context, discriminating this
particular syndrome based on facial appearance is challenging,
and can lead to misdiagnose and misclassification.

In 2003, Loos et al. (2003) first used Gabor wavelet
transformation, a machine learning method, to classify five
syndromes with an accuracy of 76%. Machine learning is a
subfield of Artificial Intelligence that allows computers to learn
from data to make predictions for a given task without being
explicitly programmed (Nguyen et al., 2019). Since then, other
traditional machine learning methods have been reported for
NS facial recognition. In 2006, Boehringer et al. (2006) first
used principal component analysis to reduce covariates from
face images of NS patients, and then applied linear discriminant
analysis, SVM and k-th nearest neighbors to discriminate NS
from other genetic syndromes with a maximum accuracy of
79.4%. In 2017, Kruszka et al. (2017) applied the independent
component analysis to locate facial landmarks, and subsequently

used a linear support vector machine as a classifier to classify
NS patients and healthy children. They achieved sensitivites and
specificities for Caucasian, African, Asian, and Latin American
children of 0.95 and 0.93, 0.94 and 0.91, 0.95 and 0.90, and 0.96
and 0.98, respectively (Kruszka et al., 2017). Recently, Porras et al.
(2021) applied the method presented by Kruszka et al. (2017) to
discriminate patients with NS from those with Williams-Beuren
syndromes, and obtained an accuracy of 85.68%. In the above
methods, after extracting features with traditional machine
learning methods, feature selection is usually performed to
accelerate the relevancy and prevent over-fitting. However, both
of these steps are complicated and time-consuming (Wang et al.,
2018). With this limitation, the computer vision community has
shifted toward DCNNs for medical image classification tasks
(Zhang et al., 2019).

A DCNN is a feed-forward artificial neural network that
consists of multiple convolutional layers followed by a nonlinear
unit (Ongsulee, 2017). It can automatically learn representation
from labeled data without requiring human expertise for feature
extraction (Wang et al., 2018). Complicated layers are often
constructed to achieve more satisfactory accuracy in facial
recognition tasks (He et al., 2016). However, accuracy may be
saturated and it can degrade rapidly as the network becomes
deeper. In 2016, He et al. (2016) introduced a deep residual
learning framework to solve this degradation problem by adding
a residual block. The residual block mainly involved a “shortcut
connection” that denotes the outputs of the identity mapping
added to the outputs of the stacked layers. With this residual
block, complicated neural networks are more easily trained
(He et al., 2016). Nevertheless, the deep residual learning
framework is still computationally expensiveness with respect to
its size and content. A depth-wise convolution block can lower
this computational complexity. Depth-wise convolution splits
the standard convolution into two separate layers for filtering
and combining. Through this optimization, the convolutional
operation becomes more efficient in terms of the number of
parameters and the computational cost (Bai et al., 2018). In the
present study, we combined the residual block and the depth-
wise block to develop a novel DCNN framework. The joint
combination of these two blocks enabled us to build a light
architecture without sacrificing accuracy.

The loss function guides the DCNN to extract features from
input images by backpropagating gradients to the weights in
the network. The definition of a loss function can impact the
discriminative ability of a model. Cross-entropy is the most
widely used loss function for classification tasks. However, cross-
entropy fails to teach the neural network the similarity among
samples belonging to the same class (Deng et al., 2019). The
ArcFace is a novel loss function developed by Deng et al. (2019).
By adding an additive angular margin penalty between deep
features and the ground truth weight, Arcface loss function can
simultaneously enhance the intra-class compactness compared to
cross-entropy (Deng et al., 2019). Chinapas et al. (2019) adapted
Arcface loss function to train personal verification system and
achieved a maximum accuracy of 0.996. However, to the best
of our knowledge, this loss function has not been used for
genetic syndrome facial recognition tasks. NS has 12 different
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genotypes, and some of the genotypes present with an atypical
facial appearance (Allanson et al., 2010). Due to this intrinsic
intra-class variation, learning the discriminative features of NS
is challenging. Arcface loss function addresses this problem with
its distinctive ability for compact intra-class variation. Hence, it
is more suitable for NS identification.

In the present study, we implemented the DCNN framework
and Arcface loss function to construct an automated facial
recognition model for NS identification. The DCNN-Arcface
model achieved an accuracy of 0.9201 ± 0.0138 and an AUC of
0.9797 ± 0.0055 when distinguishing NS patients from healthy
children, and an accuracy of 0.8171 ± 0.0074 and an AUC of
0.9274 ± 0.0062 when distinguishing NS patients from children
with several other genetic syndromes. It outperformed all six
physicians in terms of accuracy, sensitivity, and specificity.
NS usually presents with considerable heterogeneity in clinical
manifestations (Roberts et al., 2013), and it is a rare syndrome.
As such, prompt diagnosis of NS in routine clinical practice is
still a cumbersome problem for physicians. Although previous
literature has shown that the DCNN-based facial recognition
models can assist in diagnosing genetic syndromes (Gurovich
et al., 2019; Qin et al., 2020), only a few studies have used DCNNs
to identify NS. In 2020, Tekendo-Ngongang and Kruszka (2020)
applied DeepGestalt, a DCNN-based architecture, to develop
a NS facial recognition model. Their model discriminated NS
patients from matched healthy individuals with an AUC of 0.979.
However, the DeepGestalt model used cross-entropy as a loss
function. By using a novel DCNN framework and Arcface, our
DCNN-Arcface model can efficiently discriminate NS children
from both healthy children and children with several other
genetic syndromes. Also, the DCNN-Arcface model is more
suitable for identifying NS. Our study offers compelling evidence
that the DCNN-Arcface model can improve the diagnostic rate of
NS. Our results also indicate that the DCNN-Arcface model can
be adapted to detect other heterogeneous genetic syndromes.

The DCNN-Arcface model also outperformed two traditional
machine learning methods. The AUC of DCNN-Arcface model
was 0.9797 ± 0.0055 when discriminating NS patients from
healthy children, while the AUCs of the two traditional machine
learning models in the same task were 0.9031 ± 0.0064
and 0.8669 ± 0.0035, respectively. There are several possible
explanations for this result. First, the DCNN-based model
has many more parameters than the machine learning-based
models, leading to better representation ability for fitting into the
unknown function of input images and output prediction. The
deep structure also enables the network to extract latent features
layer-by-layer from raw images of NS patients’ faces. Moreover,
not all selected features are informative for NS identification
with the traditional machine learning method, and other useful
features may be lost. In contrast, the DCNN performs feature
extraction and classification in an end-to-end manner, which
avoids any manual feature-selection bias. Finally, the ArcFace
loss function increases the neural network’s discriminative power
for different classes, while the loss function for the traditional
machine learning model does not provide this benefit (Wang
et al., 2018; Deng et al., 2019; Zhang et al., 2020).

The primary limitation of this study is that there were a
limited number of dysmorphic facial photographs of NS patients.

This might have led to over-fitting. In the future, we will
conduct a multicenter study to collect more photographs, and
we will explore the use of data augmentation methods, such
as the generative adversarial networks, to generate more face
images of NS patients.

CONCLUSION

In conclusion, this study illustrated that the proposed facial
recognition model based on DCNN and Arcface loss function
could play a prominent role in NS diagnosis. The results highlight
the feasibility of facial recognition technology to identify NS in
clinical practice.
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