1,375 research outputs found

    Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation

    Get PDF
    We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.Comment: 7 pages, 4 figure

    Galaxy rotation curves: the effect of j x B force

    Full text link
    Using the Galaxy as an example, we study the effect of j x B force on the rotational curves of gas and plasma in galaxies. Acceptable model for the galactic magnetic field and plausible physical parameters are used to fit the flat rotational curve for gas and plasma based on the observed baryonic (visible) matter distribution and j x B force term in the static MHD equation of motion. We also study the effects of varied strength of the magnetic field, its pitch angle and length scale on the rotational curves. We show that j x B force does not play an important role on the plasma dynamics in the intermediate range of distances 6-12 kpc from the centre, whilst the effect is sizable for larger r (r > 15 kpc), where it is the most crucial.Comment: Accepted for publication in Astrophysics & Space Science (final printed version, typos in proofs corrected

    Cluster Monte Carlo study of multi-component fluids of the Stillinger-Helfand and Widom-Rowlinson type

    Full text link
    Phase transitions of fluid mixtures of the type introduced by Stillinger and Helfand are studied using a continuum version of the invaded cluster algorithm. Particles of the same species do not interact, but particles of different types interact with each other via a repulsive potential. Examples of interactions include the Gaussian molecule potential and a repulsive step potential. Accurate values of the critical density, fugacity and magnetic exponent are found in two and three dimensions for the two-species model. The effect of varying the number of species and of introducing quenched impurities is also investigated. In all the cases studied, mixtures of qq-species are found to have properties similar to qq-state Potts models.Comment: 25 pages, 5 figure

    Theoretical approach and impact of correlations on the critical packet generation rate in traffic dynamics on complex networks

    Full text link
    Using the formalism of the biased random walk in random uncorrelated networks with arbitrary degree distributions, we develop theoretical approach to the critical packet generation rate in traffic based on routing strategy with local information. We explain microscopic origins of the transition from the flow to the jammed phase and discuss how the node neighbourhood topology affects the transport capacity in uncorrelated and correlated networks.Comment: 6 pages, 5 figure

    Blow up criterion for compressible nematic liquid crystal flows in dimension three

    Full text link
    In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling the compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of velocity gradient and the square of maximum norm of gradient of liquid crystal director field.Comment: 22 page

    Local minimal energy landscapes in river networks

    Full text link
    The existence and stability of the universality class associated to local minimal energy landscapes is investigated. Using extensive numerical simulations, we first study the dependence on a parameter Îł\gamma of a partial differential equation which was proposed to describe the evolution of a rugged landscape toward a local minimum of the dissipated energy. We then compare the results with those obtained by an evolution scheme based on a variational principle (the optimal channel networks). It is found that both models yield qualitatively similar river patterns and similar dependence on Îł\gamma. The aggregation mechanism is however strongly dependent on the value of Îł\gamma. A careful analysis suggests that scaling behaviors may weakly depend both on Îł\gamma and on initial condition, but in all cases it is within observational data predictions. Consequences of our resultsComment: 12 pages, 13 figures, revtex+epsfig style, to appear in Phys. Rev. E (Nov. 2000

    The Interspersed Spin Boson Lattice Model

    Full text link
    We describe a family of lattice models that support a new class of quantum magnetism characterized by correlated spin and bosonic ordering [Phys. Rev. Lett. 112, 180405 (2014)]. We explore the full phase diagram of the model using Matrix-Product-State methods. Guided by these numerical results, we describe a modified variational ansatz to improve our analytic description of the groundstate at low boson frequencies. Additionally, we introduce an experimental protocol capable of inferring the low-energy excitations of the system by means of Fano scattering spectroscopy. Finally, we discuss the implementation and characterization of this model with current circuit-QED technology.Comment: Submitted to EPJ ST issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

    Microbial Associations With Microscopic Colitis

    Get PDF
    INTRODUCTION: Microscopic colitis is a relatively common cause of chronic diarrhea and may be linked to luminal factors. Given the essential role of the microbiome in human gut health, analysis of microbiome changes associated with microscopic colitis could provide insights into the development of the disease. METHODS: We enrolled patients who underwent colonoscopy for diarrhea. An experienced pathologist classified patients as having microscopic colitis (n = 52) or controls (n = 153). Research biopsies were taken from the ascending (ASC) and descending (DES) colon, and the microbiome was characterized with Illumina sequencing. We analyzed the associations between microscopic colitis and microbiome with a series of increasingly complex models adjusted for a range of demographic and health factors. RESULTS: We found that alpha diversity was significantly lower in cases with microscopic colitis compared with that in controls in the DES colon microbiome. In the DES colon, a series of models that adjusted for an increasing number of covariates found taxa significantly associated with microscopic colitis, including Proteobacteria that was enriched in cases and Collinsella that was enriched in controls. While the alpha diversity and taxa were not significantly associated with microscopic colitis in the ASC colon microbiome, the inference P values based on ASC and DES microbiomes were highly correlated. DISCUSSION: Our study demonstrates an altered microbiome in cases with microscopic colitis compared with that in controls. Because both the cases and controls experienced diarrhea, we have identified candidate taxa that could be mechanistically responsible for the development of microscopic colitis independent of changes to the microbial community caused by diarrhea

    Dietary calcium and risk of microscopic colitis

    Get PDF
    BACKGROUND: Microscopic colitis is an increasingly common cause of watery diarrhea particularly in older individuals. The role of diet in microscopic colitis has received little study. METHODS: We conducted a case-control study at a single institution enrolling patients referred for elective, outpatient colonoscopy for diarrhea. Patients were classified as microscopic colitis cases or non-microscopic colitis controls following review of colon biopsies by one research pathologist. Study subjects were interviewed by a trained telephone interviewer using a validated food frequency questionnaire. Adherent microbes were evaluated from colonic biopsies using 16s rRNA sequencing. RESULTS: The study population included 106 microscopic colitis cases and 215 controls. Compared to controls, the cases were older, better educated and more likely to be female. Microscopic colitis cases had lower body mass index (BMI) and were more likely to have lost weight. Subjects in the highest quartile of dietary calcium intake had a lower risk of microscopic colitis compared to the lowest quartile, adjusted odds ratio 0.22, 95% confidence interval 0.07-0.76). The findings were not explained by dairy intake, body mass index or weight loss. We found that dietary calcium intake had significant associations with the abundance of Actinobacteria and Coriobacteriales in the microbial community of colonic biopsies. CONCLUSIONS: Compared to patients with diarrhea, microscopic colitis cases had lower intake of dietary calcium. Diet can be associated with alterations in the gut microbiota and with luminal factors that could affect risk for microscopic colitis

    The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins

    Get PDF
    SummarySpinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an expanded glutamine tract in human Ataxin-1 (hAtx-1). The expansion stabilizes hAtx-1, leading to its accumulation. To understand how stabilized hAtx-1 induces selective neuronal degeneration, we studied Drosophila Atx-1 (dAtx-1), which has a conserved AXH domain but lacks a polyglutamine tract. Overexpression of hAtx-1 in fruit flies produces phenotypes similar to those of dAtx-1 but different from the polyglutamine peptide alone. We show that the Drosophila and mammalian transcription factors Senseless/Gfi-1 interact with Atx-1’s AXH domain. In flies, overexpression of Atx-1 inhibits sensory-organ development by decreasing Senseless protein. Similarly, overexpression of wild-type and glutamine-expanded hAtx-1 reduces Gfi-1 levels in Purkinje cells. Deletion of the AXH domain abolishes the effects of glutamine-expanded hAtx-1 on Senseless/Gfi-1. Interestingly, loss of Gfi-1 mimics SCA1 phenotypes in Purkinje cells. These results indicate that the Atx-1/Gfi-1 interaction contributes to the selective Purkinje cell degeneration in SCA1
    • …
    corecore