261 research outputs found

    Performance assessment of islanding detection methods using the concept of non-detection zones

    Get PDF
    Concerns for the rising cost of electricity, environmental impact, and the difficulty in obtaining new right-of-ways results in the use of smaller environmentally-friendly power sources such as photovoltaic (PV), wind-driven or gas-fired micro-turbines located closer to the end consumers, which are connected directly to the distribution system in what is commonly referred to as distributed generation (DG). The protection schemes of the distribution systems were designed under the assumption that power flows from the substations to the end users. If a fault takes place and a breaker opens all circuits downstream would be de-energized. However this is not the case when DG is used. Under fault condition, an island condition with power generation and consumption threatens both equipment and personnel safety. Thus, islanding detection methods (IDMs) must be developed and tested. A number of IDMs has been developed to prevent this situation. The goal of this thesis is to investigate a means for comparing the effectiveness of active type IDMs used in an inverter based DG. Unlike standard passive IDMs, the use of non-detection zones (NDZ) in a power imbalance plane is not adequate. This thesis proposes a new load parameter space based on the load quality factor Q f and resonant frequency f 0 . Equations that describe the NDZs of three of the most used active IDMS, namely active frequency drift (AFD), slip-mode phase shift (SMS) and Sandia frequency shift (SFS) have been derived. Simulation and experimental results are presented to corroborate the theoretical analysi

    Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China

    Get PDF
    Regional haze episodes have been frequently reported in east China since 2000. In the present study, two regional haze episodes over east China in the spring of 2011 were examined by observations and simulations conducted by a three-dimensional regional chemical transport model (NAQPMS) with an on-line tracer-tagged module. The model reproduced accurately the observed PM2.5 with correlation coefficient ranging from 0.52 to 0.76 and root mean square error (RMSE) of 20–50µg/m3 in four city clusters (Yangtze River Delta, Shandong Peninsula, Huabei Plain and Central Liaoning) over east China. Our results indicate that a northward cross-border transport from the Yangtze River Delta to Central Liaoning below 2 km above ground played an important role in the formation of these regional high PM2.5 episodes. Contributions of regional transport from outside city clusters presented an increasing trend from south to north. In the northernmost cluster (Central Liaoning), the contribution from other city clusters reached 40–50% during the two episodes. In contrast, it was below 10% in the Yangtze River Delta (southernmost cluster). Mixing accumulation of pollutants from various city clusters during transport was responsible for this trend. Furthermore, a preliminary estimate shows that cross-border transport of PM2.5 might increase 0.5–3% daily mortality during the high PM2.5 episodes

    Adopting a Theophylline-Responsive Riboswitch for Flexible Regulation and Understanding of Glycogen Metabolism in Synechococcus elongatus PCC7942

    Get PDF
    Cyanobacteria are supposed to be promising photosynthetic microbial platforms that recycle carbon dioxide driven into biomass and bioproducts by solar energy. Glycogen synthesis serves as an essential natural carbon sink mechanism, storing a large portion of energy and organic carbon source of photosynthesis. Engineering glycogen metabolism to harness and rewire carbon flow is an important strategy to optimize efficacy of cyanobacteria platforms. ADP-glucose pyrophosphorylase (GlgC) catalyzes the rate-limiting step for glycogen synthesis. However, knockout of glgC fails to promote cell growth or photosynthetic production in cyanobacteria, on the contrary, glgC deficiency impairs cellular fitness and robustness. In this work, we adopted a theophylline-responsive riboswitch to engineer and control glgC expression in Synechococcus elongatus PCC7942 and achieved flexible regulation of intracellular GlgC abundance and glycogen storage. With this approach, glycogen synthesis and glycogen contents in PCC7942 cells could be regulated in a range from about 40 to 300% of wild type levels. In addition, the results supported a positive role of glycogen metabolism in cyanobacteria cellular robustness. When glycogen storage was reduced, cellular physiology and growth under standard conditions was not impaired, while cellular tolerance toward environmental stresses was weakened. While when glycogen synthesis was enhanced, cells of PCC7942 displayed optimized cellular robustness. Our findings emphasize the significance of glycogen metabolism for cyanobacterial physiology and the importance of flexible approaches for engineering and understanding cellular physiology and metabolism

    Serum Creatinine Level: A Supplemental Index to Distinguish Duchenne Muscular Dystrophy from Becker Muscular Dystrophy

    Get PDF
    Background. To improve assessment of dystrophinopathy, the aim of this study was to identify whether serum creatinine (Crn) level reflects disease severity. Methods. Biochemical, Vignos score, and genetic data were collected on 212 boys with dystrophinopathy. Results. Serum Crn level had a strong inverse correlation with Vignos score by simple correlation ( = −0.793) and partial correlation analysis after adjustment for age, height, and weight ( = −0.791; both < 0.01). Serum Crn level was significantly higher in patients with in-frame than out-of-frame mutations ( = −4.716, < 0.01) and in Becker muscular dystrophy (BMD) patients than Duchenne muscular dystrophy (DMD) patients at ages 4, 5, 7, and 9 yr (all < 0.0125). After adjusting for age, height, and weight, BMD patients still had a significantly higher serum Crn level than DMD patients ( = 7.140, = 6.277, < 0.01). Conclusions. Serum Crn level reflected disease severity and may serve as a supplemental index to distinguish DMD from BMD in clinical practice

    Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils

    Get PDF
    Reclamation of degraded soils such as those with low organic carbon content and soils co-contaminated with toxic elements and phthalic acid esters (PAEs) is of great concern. Little is known about the efficiency of plantand animal-derived biochars for improving plant growth and physicochemical and biological properties of co-contaminated soils, particularly under low content of organic matter. Hence, a pot trial was carried out by growing pak choi (Brassica chinensis L.) to assess the influence of different doses (0, 0.5, 1, 2, and 4%) of animal (pig carcass) and wood (Platanus orientalis) derived biochars on soil properties, nutrient availabilities, plant growth, and soil enzyme activities in two soils containing low (LOC) and high (HOC) organic carbon contents and co-contaminated with di-(2-ethylhexyl) phthalic acid (DEHP) and cadmium (Cd). Biochar applications improved pH, salinity, carbon content, and cation exchange capacity of both soils. Addition of biochars significantly increased the bioavailability and uptake of phosphorus and potassium in the plants in both soils with greater effects from pig biochar than wood biochar. Biochar additions also significantly enhanced urease, sucrase, and catalase activities, but suppressed acid phosphatase activity in both soils. The impact of pig biochar was stronger on urease and acid phosphatase, while the wood biochar was more effective with sucrase and catalase activities. The biomass yield of pak choi was significantly increased after biochar addition to both soils, especially in 2% pig biochar treatment in the LOC soil. The positive response of soil enzymes activities and plant growth for biochar addition to the Cd and DEHP co-contaminated soils indicate that both biochars, particularly the pig biochar can mitigate the risk of these pollutants and prove to be eco-friendly and low-cost amendments for reclaiming these degraded soils

    Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder

    Get PDF
    Autism spectrum disorder (ASD) is a group of clinically and genetically heterogeneous neurodevelopmental disorders. Recent tremendous advances in the whole exome sequencing (WES) enable rapid identification of variants associated with ASD including single nucleotide variations (SNVs) and indels. To further explore genetic etiology of ASD in Chinese children with negative findings of copy number variants (CNVs), we applied WES in 80 simplex families with a single affected offspring with ASD or suspected ASD, and validated variations predicted to be damaging by Sanger sequencing. The results showed that an overall diagnostic yield of 8.8% (9.2% in the group of ASD and 6.7% in the group of suspected ASD) was observed in our cohort. Among patients with diagnosed ASD, developmental delay or intellectual disability (DD/ID) was the most common comorbidity with a diagnostic yield of 13.3%, followed by seizures (50.0%) and craniofacial anomalies (40.0%). All of identified de novo SNVs and indels among patients with ASD were loss of function (LOF) variations and were slightly more frequent among female (male vs. female: 7.3% vs. 8.5%). A total of seven presumed causative genes (CHD8, AFF2, ADNP, POGZ, SHANK3, IL1RAPL1, and PTEN) were identified in this study. In conclusion, WES is an efficient diagnostic tool for diagnosed ASD especially those with negative findings of CNVs and other neurological disorders in clinical practice, enabling early identification of disease related genes and contributing to precision and personalized medicine

    Genetic Evaluation of 114 Chinese Short Stature Children in the Next Generation Era: a Single Center Study

    Get PDF
    Background/Aims: The genetics of human height is a frequently studied and complex issue. However, there is limited genetic research of short stature. To uncover the subgroup of patients to have higher yield and to propose a simplified diagnostic algorithm in the next generation era. Methods: This study included 114 Chinese children with height SDS ≤ -2.5 and unknown etiology from 2014 to 2015. Target/whole exome sequencing (referred as NGS) and chromosomal microarray analysis (CMA) were performed on the enrolled patients sequentially to identify potential genetic etiologies. The samples solved by NGS and CMA were retrospectively studied to evaluate the clinical pathway of the patients following a standard diagnostic algorithm. Results: In total, a potential genetic etiology was identified in 41 (36%) patients: 38 by NGS (33.3%), two by CMA (1.8%), and an additional one by both (0.9%). There were 46 different variants in 29 genes and 2 pathogenic CNVs identified. The diagnostic yield was significantly higher in patients with facial dysmorphism or skeletal abnormalities than those without the corresponding phenotype (P=0.006 and P=0.009, respectively, Pearson’s χ2 test). Retrospectively study the cohort indicate 83.3% patients eventually would be evaluated by NGS/CMA. Conclusion: This study confirms the utility of high-throughput molecular detection techniques for the etiological diagnosis of undiagnosed short stature and suggests that NGS could be used as a primary diagnostic strategy. Patients with facial dysmorphism and/or skeletal abnormalities are more likely to have a known genetic etiology. Moving NGS forward would simplified the diagnostic algorithm

    Deficiency of Antinociception and Excessive Grooming Induced by Acute Immobilization Stress in Per1 Mutant Mice

    Get PDF
    Acute stressors induce changes in numerous behavioral parameters through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Several important hormones in paraventricular nucleus of the hypothalamus (PVN) play the roles in these stress-induced reactions. Corticotropin-releasing hormone (CRH), arginine-vasopressin (AVP) and corticosterone are considered as molecular markers for stress-induced grooming behavior. Oxytocin in PVN is an essential modulator for stress-induced antinociception. The clock gene, Per1, has been identified as an effecter response to the acute stresses, but its function in neuroendocrine stress systems remains unclear. In the present study we observed the alterations in grooming and nociceptive behaviors induced by acute immobilization stress in Per1 mutant mice and other genotypes (wild types and Per2 mutant). The results displayed that stress elicited a more robust effect on grooming behavior in Per1 mutant mice than in other genotypes. Subsequently, the obvious stress-induced antinociception was observed in the wild-type and Per2 mutant mice, however, in Per1 mutant, this antinociceptive effects were partially-reversed (mechanical sensitivity), or over-reversed to hyperalgesia (thermal sensitivity). The real-time qPCR results showed that in PVN, there were stress-induced up-regulations of Crh, Avp and c-fos in all of genotypes; moreover, the expression change of Crh in Per1 mutant mice was much larger than in others. Another hormonal gene, Oxt, was up-regulated induced by stress in wild-type and Per2 mutant but not in Per1 mutant. In addition, the stress significantly elevated the serum corticosterone levels without genotype-dependent differences, and accordingly the glucocorticoid receptor gene, Nr3c1, expressed with a similar pattern in PVN of all strains. Taken together, the present study indicated that in acute stress treated Per1 mutant mice, there are abnormal hormonal responses in PVN, correlating with the aberrant performance of stress-induced behaviors. Therefore, our findings suggest a novel functional role of Per1 in neuroendocrine stress system, which further participates in analgesic regulation
    • …
    corecore