111 research outputs found

    Reliability Parameter Interval Estimation of NC Machine Tools considering Working Conditions

    Get PDF
    Aiming at the problem that the parameter interval estimation of NC machine tool’s reliability model considering working conditions established by Hongzhou is difficult to implement, given that it has several independent variables, an improved interval estimation method based on Bootstrap is proposed. Firstly, the two-step estimation method was used to calculate the point estimation of NC machine tool’s reliability parameter in test field, based on which B resamplings are generated based on the point estimation. The reliability parameter’s point estimation of the resamplings was obtained by maximum likelihood estimation. Permutation of B point estimations was made in ascending order and the interval estimations were obtained by the α quantile of the permutation. Case study indicated that the location and length of the interval estimation of NC machine tools’ reliability parameter, under different levels of working condition covariates, vary obviously

    Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV+H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV+H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV+H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-Îł secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses

    Electrochemistry of myoglobin on graphene–SnO2 nanocomposite modified electrode and its electrocatalysis

    Get PDF
    AbstractIn this paper direct electrochemistry and electrocatalysis of myoglobin (Mb) immobilized on a graphene (GR)–SnO2 nanocomposite modified carbon ionic liquid electrode was reported. GR–SnO2 nanocomposite was synthesized by a simple solution method and further characterized by TEM and SEM, which exhibited large surface area beneficial for Mb immobilization. Spectroscopic results indicated Mb retained its native structure without denaturation after mixed with nanocomposite. Electrochemical investigation showed that a pair of well-defined redox peaks appeared on cyclic voltammogram, indicating that direct electron transfer of Mb with the underlying electrode was realized. The results could be attributed to the presence of GR–SnO2 nanocomposite that could enhance the electron transfer between the protein and the electrode. The Mb modified electrode exhibited good stability and catalytic activity to the electroreduction of NaNO2 in the concentration range from 0.2 to 350.0μmolL−1 with wider dynamic range and lower detection limit. Therefore the fabricated electrode has the potential application in the third-generation electrochemical biosensor

    The Novel Monkeypox Outbreak: What Should We Know and Reflect On?

    Get PDF
    While the COVID-19 pandemic continues, the world is on high alert regarding the second public health threat of a global monkeypox outbreak. Monkeypox, a relative of smallpox, is a zoonotic disease that was initially restricted to Africa. However, a novel outbreak has occurred in Europe, a non-endemic region, starting in May 2022. In the face of this unprecedented event, people should be aware of several crucial facts regarding monkeypox to support global public health prevention and control of the outbreak, including pathogenetic epidemiological and diagnostic aspects. As the cases outside Africa rapidly increase, including in a large proportion of men who have sex with men, thinking about the potential effects on global public health, as well as the shifting epidemiological trends of monkeypox and the insights from this novel outbreak, will be crucial

    Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human immunodeficiency virus type 1 (HIV-1) pandemic has continued unabated for nearly 30 years. To better understand the influence of virus on host cells, we performed the differential proteome research of peripheral blood mononuclear cells (PBMCs) from HIV-positive patients and healthy controls.</p> <p>Results</p> <p>26 protein spots with more than 1.5-fold difference were detected in two dimensional electrophoresis (2DE) gels. 12 unique up-regulated and one down-regulated proteins were identified in HIV-positive patients compared with healthy donors. The mRNA expression of 10 genes was analyzed by real time RT-PCR. It shows that the mRNA expression of talin-1, vinculin and coronin-1C were up-regulated in HIV positive patients and consistent with protein expression. Western blotting analysis confirmed the induction of fragments of vinculin, talin-1 and filamin-A in pooled and most part of individual HIV-positive clinical samples. Bioinformatic analysis showed that a wide host protein network was disrupted in HIV-positive patients.</p> <p>Conclusions</p> <p>Together, this work provided useful information to facilitate further investigation of the underlying mechanism of HIV and host cell protein interactions, and discovered novel potential biomarkers such as fragment of vinculin, filamin-A and talin-1 for anti-HIV research.</p

    Epidemiology and clinical course of COVID-19 in Shanghai, China.

    Get PDF
    Background: Novel coronavirus pneumonia (COVID-19) is prevalent around the world. We aimed to describe epidemiological features and clinical course in Shanghai. Methods: We retrospectively analysed 325 cases admitted at Shanghai Public Health Clinical Center, between January 20 and February 29, 2020. Results: 47.4% (154/325) had visited Wuhan within 2 weeks of illness onset. 57.2% occurred in 67 clusters; 40% were situated within 53 family clusters. 83.7% developed fever during the disease course. Median times from onset to first medical care, hospitalization and negative detection of nucleic acid by nasopharyngeal swab were 1, 4 and 8 days. Patients with mild disease using glucocorticoid tended to have longer viral shedding in blood and feces. At admission, 69.8% presented with lymphopenia and 38.8% had elevated D-dimers. Pneumonia was identified in 97.5% (314/322) of cases by chest CT scan. Severe-critical patients were 8% with a median time from onset to critical disease of 10.5 days. Half required oxygen therapy and 7.1% high-flow nasal oxygen. The case fatality rate was 0.92% with median time from onset to death of 16 days. Conclusion: COVID-19 cases in Shanghai were imported. Rapid identification, and effective control measures helped to contain the outbreak and prevent community transmission

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases

    Design of Testing Period for Reliability Assessment of Numerical Control Machine Tools Considering Working Conditions

    No full text
    The existing methods of determining testing period do not consider the effect of working condition covariates on reliability testing period of Numerical Control (NC) machine tools, which may lead to high-cost testing or low-precision assessment. Aiming at the problem, a new method of determining the testing period considering working condition covariates is proposed. The change rate of interval estimation of Mean Time between Failures (MTBF) is used as the criterion for determining the length of testing period. The reliability model of NC machine tools is established by the Cox proportional hazards model, and the two-step estimation method is used to estimate parameters of the baseline failure rate function and the coefficients of working condition covariates. The Bootstrap resamples are obtained by the Bootstrap resampling method. And then the parameters of the baseline failure rate function and the coefficients of working condition covariates are estimated simultaneously by maximum likelihood method, and thus interval estimations of MTBF under each covariate are obtained. The change rate models of MTBF interval estimation under each covariate level are established by Power function, and the testing periods under each covariate are obtained. Case study indicates that the testing periods under each covariate obtained by the proposed method are more accurate than those obtained by the others, when the same criterion and confidence level 1-Îą are set

    Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells

    Get PDF
    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing
    • …
    corecore