389 research outputs found
Metallicity Gradients in the Milky Way Disk as Observed by the SEGUE Survey
The observed radial and vertical metallicity distribution of old stars in the
Milky Way disk provides a powerful constraint on the chemical enrichment and
dynamical history of the disk. We present the radial metallicity gradient,
\Delta[Fe/H]/\Delta R, as a function of height above the plane, |Z|, using 7010
main sequence turnoff stars observed by the Sloan Extension for Galactic
Understanding and Exploration (SEGUE) survey. The sample consists of mostly old
thin and thick disk stars, with a minimal contribution from the stellar halo,
in the region 6 < R < 16 kpc, 0.15 < |Z| < 1.5 kpc. The data reveal that the
radial metallicity gradient becomes flat at heights |Z| > 1 kpc. The median
metallicity at large |Z| is consistent with the metallicities seen in outer
disk open clusters, which exhibit a flat radial gradient at [Fe/H] ~ -0.5. We
note that the outer disk clusters are also located at large |Z|; because the
flat gradient extends to small R for our sample, there is some ambiguity in
whether the observed trends for clusters are due to a change in R or |Z|. We
therefore stress the importance of considering both the radial and vertical
directions when measuring spatial abundance trends in the disk. The flattening
of the gradient at high |Z| also has implications on thick disk formation
scenarios, which predict different metallicity patterns in the thick disk. A
flat gradient, such as we observe, is predicted by a turbulent disk at high
redshift, but may also be consistent with radial migration, as long as mixing
is strong. We test our analysis methods using a mock catalog based on the model
of Sch\"onrich & Binney, and we estimate our distance errors to be ~25%. We
also show that we can properly correct for selection biases by assigning
weights to our targets.Comment: Submitted to ApJ; 22 pages, 14 figures in emulateapj format; Full
resolution version available at
http://www.ucolick.org/~jyc/gradient/cheng_apj_fullres.pd
Feature selection using a one dimensional naïve Bayes' classifier increases the accuracy of support vector machine classification of CDR3 repertoires.
MOTIVATION: Somatic DNA recombination, the hallmark of vertebrate adaptive immunity, has the potential to generate a vast diversity of antigen receptor sequences. How this diversity captures antigen specificity remains incompletely understood. In this study we use high throughput sequencing to compare the global changes in T cell receptor β chain complementarity determining region 3 (CDR3β) sequences following immunization with ovalbumin administered with complete Freund's adjuvant (CFA) or CFA alone. RESULTS: The CDR3β sequences were deconstructed into short stretches of overlapping contiguous amino acids. The motifs were ranked according to a one-dimensional Bayesian classifier score comparing their frequency in the repertoires of the two immunization classes. The top ranking motifs were selected and used to create feature vectors which were used to train a support vector machine. The support vector machine achieved high classification scores in a leave-one-out validation test reaching : >90% in some cases. SUMMARY: The study describes a novel two-stage classification strategy combining a one-dimensional Bayesian classifier with a support vector machine. Using this approach we demonstrate that the frequency of a small number of linear motifs three amino acids in length can accurately identify a CD4 T cell response to ovalbumin against a background response to the complex mixture of antigens which characterize Complete Freund's Adjuvant. AVAILABILITY AND IMPLEMENTATION: The sequence data is available at www.ncbi.nlm.nih.gov/sra/?term¼SRP075893 The Decombinator package is available at github.com/innate2adaptive/Decombinator The R package e1071 is available at the CRAN repository https://cran.r-project.org/web/packages/e1071/index.html CONTACT: [email protected] information: Supplementary data are available at Bioinformatics online
Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization.
T cells recognize antigen using a large and diverse set of antigen-specific receptors created by a complex process of imprecise somatic cell gene rearrangements. In response to antigen-/receptor-binding-specific T cells then divide to form memory and effector populations. We apply high-throughput sequencing to investigate the global changes in T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, to understand how adaptive immunity achieves specificity. Each immunized mouse contained a predominantly private but related set of expanded CDR3β sequences. We used machine learning to identify common patterns which distinguished repertoires from mice immunized with adjuvant with and without OVA. The CDR3β sequences were deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies of these motifs were used to train the linear programming boosting (LPBoost) algorithm LPBoost to classify between TCR repertoires. LPBoost could distinguish between the two classes of repertoire with accuracies above 80%, using a small subset of triplet sequences present at defined positions along the CDR3. The results suggest a model in which such motifs confer degenerate antigen specificity in the context of a highly diverse and largely private set of T cell receptors
Persistent T Cell Repertoire Perturbation and T Cell Activation in HIV After Long Term Treatment
Objective: In people living with HIV (PLHIV), we sought to test the hypothesis that long term anti-retroviral therapy restores the normal T cell repertoire, and investigate the functional relationship of residual repertoire abnormalities to persistent immune system dysregulation. Methods: We conducted a case-control study in PLHIV and HIV-negative volunteers, of circulating T cell receptor repertoires and whole blood transcriptomes by RNA sequencing, complemented by metadata from routinely collected health care records. Results: T cell receptor sequencing revealed persistent abnormalities in the clonal T cell repertoire of PLHIV, characterized by reduced repertoire diversity and oligoclonal T cell expansion correlated with elevated CD8 T cell counts. We found no evidence that these expansions were driven by cytomegalovirus or another common antigen. Increased frequency of long CDR3 sequences and reduced frequency of public sequences among the expanded clones implicated abnormal thymic selection as a contributing factor. These abnormalities in the repertoire correlated with systems level evidence of persistent T cell activation in genome-wide blood transcriptomes. Conclusions: The diversity of T cell receptor repertoires in PLHIV on long term anti-retroviral therapy remains significantly depleted, and skewed by idiosyncratic clones, partly attributable to altered thymic output and associated with T cell mediated chronic immune activation. Further investigation of thymic function and the antigenic drivers of T cell clonal selection in PLHIV are critical to efforts to fully re-establish normal immune function
Individualized high-resolution analysis to categorize diverse learning and memory deficits in tau rTg4510 mice exposed to low-intensity blast
Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) exposure in military and civilian individuals is linked to enduring behavioral and cognitive abnormalities. These injuries can serve as confounding risk factors for the development of neurodegenerative disorders, including Alzheimer’s disease-related dementias (ADRD). Recent animal studies have demonstrated LIB-induced brain damage at the molecular and nanoscale levels. Nevertheless, the mechanisms linking these damages to cognitive abnormalities are unresolved. Challenges preventing the translation of preclinical studies into meaningful findings in “real-world clinics” encompass the heterogeneity observed between different species and strains, variable time durations of the tests, quantification of dosing effects and differing approaches to data analysis. Moreover, while behavioral tests in most pre-clinical studies are conducted at the group level, clinical tests are predominantly assessed on an individual basis. In this investigation, we advanced a high-resolution and sensitive method utilizing the CognitionWall test system and applying reversal learning data to the Boltzmann fitting curves. A flow chart was developed that enable categorizing individual mouse to different levels of learning deficits and patterns. In this study, rTg4510 mice, which represent a neuropathology model due to elevated levels of tau P301L, together with the non-carrier genotype were exposed to LIB. Results revealed distinct and intricate patterns of learning deficits and patterns within each group and in relation to blast exposure. With the current findings, it is possible to establish connections between mice with specific cognitive deficits to molecular changes. This approach can enhance the translational value of preclinical findings and also allow for future development of a precision clinical treatment plan for ameliorating neurologic damage of individuals with mTBI
A Short Scale Length for the \alpha-Enhanced Thick Disk of the Milky Way: Evidence from Low-Latitude SEGUE Data
We examine the \alpha-element abundance ratio, [\alpha/Fe], of 5620 stars,
observed by the Sloan Extension for Galactic Understanding and Exploration
survey in the region 6 kpc < R < 16 kpc, 0.15 kpc < |Z| < 1.5 kpc, as a
function of Galactocentric radius R and distance from the Galactic plane |Z|.
Our results show that the high-\alpha\ thick disk population has a short scale
length (L_thick ~ 1.8 kpc) compared to the low-\alpha population, which is
typically associated with the thin disk. We find that the fraction of
high-\alpha\ stars in the inner disk increases at large |Z|, and that
high-\alpha\ stars lag in rotation compared to low-\alpha\ stars. In contrast,
the fraction of high-\alpha\ stars in the outer disk is low at all |Z|, and
high- and low-\alpha\ stars have similar rotational velocities up to 1.5 kpc
from the plane. We interpret these results to indicate that different processes
were responsible for the high-\alpha\ populations in the inner and outer disk.
The high-\alpha\ population in the inner disk has a short scale length and
large scale height, consistent with a scenario in which the thick disk forms
during an early gas-rich accretion phase. Stars far from the plane in the outer
disk may have reached their current locations through heating by minor mergers.
The lack of high-\alpha\ stars at large R and |Z| also places strict
constraints on the strength of radial migration via transient spiral structure.Comment: 14 pages, 7 figures, accepted to The Astrophysical Journa
PIPKIγ Regulates Focal Adhesion Dynamics and Colon Cancer Cell Invasion
Focal adhesion assembly and disassembly are essential for cell migration and cancer invasion, but the detailed molecular mechanisms regulating these processes remain to be elucidated. Phosphatidylinositol phosphate kinase type Iγ (PIPKIγ) binds talin and is required for focal adhesion formation in EGF-stimulated cells, but its role in regulating focal adhesion dynamics and cancer invasion is poorly understood. We show here that overexpression of PIPKIγ promoted focal adhesion formation, whereas cells expressing either PIPKIγK188,200R or PIPKIγD316K, two kinase-dead mutants, had much fewer focal adhesions than those expressing WT PIPKIγ in CHO-K1 cells and HCT116 colon cancer cells. Furthermore, overexpression of PIPKIγ, but not PIPKIγK188,200R, resulted in an increase in both focal adhesion assembly and disassembly rates. Depletion of PIPKIγ by using shRNA strongly inhibited formation of focal adhesions in HCT116 cells. Overexpression of PIPKIγK188,200R or depletion of PIPKIγ reduced the strength of HCT116 cell adhesion to fibronection and inhibited the invasive capacities of HCT116 cells. PIPKIγ depletion reduced PIP2 levels to ∼40% of control and PIP3 to undetectable levels, and inhibited vinculin localizing to focal adhesions. Taken together, PIPKIγ positively regulates focal adhesion dynamics and cancer invasion, most probably through PIP2-mediated vinculin activation
Identification of sulfation sites of metabolites and prediction of the compounds’ biological effects
Characterizing the biological effects of metabolic transformations (or biotransformation) is one of the key steps in developing safe and effective pharmaceuticals. Sulfate conjugation, one of the major phase II biotransformations, is the focus of this study. While this biotransformation typically facilitates excretion of metabolites by making the compounds more water soluble, sulfation may also lead to bioactivation, producing carcinogenic products. The end result, excretion or bioactivation, depends on the structural features of the sulfation sites, so obtaining the structure of the sulfated metabolites is critically important. We describe herein a very simple, high-throughput procedure for using mass spectrometry to identify the structure—and thus the biological fate—of sulfated metabolites. We have chemically synthesized and analyzed libraries of compounds representing all the biologically relevant types of sulfation products, and using the mass spectral data, the structural features present in these analytes can be reliably determined, with a 97% success rate. This work represents the first example of a high-throughput analysis that can identify the structure of sulfated metabolites and predict their biological effects
Hematogenous Metastasis of Ovarian Cancer: Rethinking Mode of Spread
SummaryOvarian cancer has a clear predilection for metastasis to the omentum, but the underlying mechanisms involved in ovarian cancer spread are not well understood. Here, we used a parabiosis model that demonstrates preferential hematogenous metastasis of ovarian cancer to the omentum. Our studies revealed that the ErbB3-neuregulin 1 (NRG1) axis is a dominant pathway responsible for hematogenous omental metastasis. Elevated levels of ErbB3 in ovarian cancer cells and NRG1 in the omentum allowed for tumor cell localization and growth in the omentum. Depletion of ErbB3 in ovarian cancer impaired omental metastasis. Our results highlight hematogenous metastasis as an important mode of ovarian cancer metastasis. These findings have implications for designing alternative strategies aimed at preventing and treating ovarian cancer metastasis
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …