291 research outputs found

    ProLanGO: Protein Function Prediction Using Neural~Machine Translation Based on a Recurrent Neural Network

    Full text link
    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.Comment: 13 pages, 5 figure

    Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach

    Full text link
    Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image containing arbitrary part of the body. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverages Fully Convolutional Network (FCN) to generate fix-sized spatial feature maps such that pixel-level features are consistent. To match a pair of person images of different sizes, a novel method called Deep Spatial feature Reconstruction (DSR) is further developed to avoid explicit alignment. Specifically, DSR exploits the reconstructing error from popular dictionary learning models to calculate the similarity between different spatial feature maps. In that way, we expect that the proposed FCN can decrease the similarity of coupled images from different persons and increase that from the same person. Experimental results on two partial person datasets demonstrate the efficiency and effectiveness of the proposed method in comparison with several state-of-the-art partial person re-id approaches. Additionally, DSR achieves competitive results on a benchmark person dataset Market1501 with 83.58\% Rank-1 accuracy.Comment: 8 pages, 11 figures, accepted by CVPR 201

    Submillisecond-response polymer network liquid crystal phase modulators at 1.06-mu m wavelength

    Get PDF
    A fast-response and scattering-free polymer network liquid crystal (PNLC) light modulator is demonstrated at lambda = 1.06 mu m wavelength. A decay time of 117 mu s for 2 pi phase modulation is obtained at 70 degrees C, which is similar to 650 x faster than that of the host nematic LCs. The major tradeoff is the increased operating voltage. Potential applications include spatial light modulators and adaptive optics

    Exploring the Formation Mechanism of Radical Technological Innovation: An MLP Approach

    Get PDF
    This paper identifies three stages in the radical technological innovation process, namely formation process in niches, breaking out of niches and entering regimes, and new regime formation. It then adopts Multi-level Perspective (MLP) to explore the formation process, operating mechanism, breakthrough path, and impact factors of radical technological innovation. A three-phase model, which includes formation of radical innovation, breakout of radical innovation, and new regimes construction, is proposed to analyze radical technological innovation. The model is adopted in a case study to analyze the leapfrogging development of technologies in China’s mobile communication industry. This paper enriches technological innovation theory and provides supports for policy making and guidance for industries/enterprises practices regarding technological innovation in emerging economies

    Technological Innovation Research: A Structural Equation Modelling Approach

    Get PDF
    The paper explores the relationship among technological innovation, technological trajectory transition, and firms’ innovation performance. Technological innovation is studied from the perspectives of innovation novelty and innovation openness. Technological trajectory transition is categorized into creative cumulative technological trajectory transition and creative disruptive technological trajectory transition. A structural equation model is developed and tested with data collected by surveying 366 Chinese firms. The results indicate that both innovation novelty and innovation openness positively affects creative cumulative technological trajectory transition as well as creative disruptive technological trajectory transition. Innovation openness and creative disruptive technological trajectory transition both positively affect firms’ innovation performance. However, neither innovation novelty nor creative cumulative technological trajectory transition positively affects firms’ innovation performance. Implications for managers and directions for future studies are discussed
    • …
    corecore