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Abstract: Reliable facial recognition systems are of crucial importance in various 

applications from entertainment to security. Thanks to the deep-learning concepts 

introduced in the field, a significant improvement in the performance of the unimodal 

facial recognition systems has been observed in the recent years. At the same time a 

multimodal facial recognition is a promising approach. This paper combines the latest 

successes in both directions by applying deep learning Convolutional Neural Networks 

(CNN) to the multimodal RGB-D-T based facial recognition problem outperforming 

previously published results. Furthermore, a late fusion of the CNN-based recognition 

block with various hand-crafted features (LBP, HOG, HAAR, HOGOM) is introduced, 

demonstrating even better recognition performance on a benchmark RGB-D-T database. 

The obtained results in this paper show that the classical engineered features and CNN-

based features can complement each other for recognition purposes. 
 

1. Introduction 

 

Biometric systems, including DNA, face, iris, palmprint, fingerprint, to name a few, are 

systems that use human behavioural or physical characteristics for identification purposes. 

Facial biometrics, as opposed to many other biometrics, can be collected contact-free. Face 

recognition algorithms, however similar to other biometrics systems, have to deal with a wide 

spectrum of challenges, like: intra-class variations, noise in the system, spoofing attacks and 

constantly increasing performance requirements. Several algorithms have been developed for 

face recognition to deal with these challenges. Examples of such algorithms, include but are 

not limited to, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) [24, 

27, 28], Local Binary Patterns (LBP) [1], Histograms of Oriented Gradients (HOG) [5], Haar-

like rectangular features (HAAR) [16], and Histograms of Gabor Ordinal Measures 

(HOGOMs) [4].  
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Just recently a feature learning approach based on deep learning techniques has received 

enormous attention in computer vision generally, and in recognition systems specifically, 

including face recognition [25]. Systems based on features learned by deep learning have 

reported outstanding results outperforming most of the other existing face recognition methods. 

These systems are getting close to fill up the gap between human and machine performances 

in recognition tasks. This phenomenon can be explained by the large amount of data currently 

available for learning and growing computational power of the devices used for training. 

Companies like Google, Facebook, and Baidu are building face recognition software based on 

deep learning concepts [25]. 

Parallel to the development of better features and classifiers for face recognition, 

multimodality has also been used as a solution for developing systems [22]. The overall idea 

is that different modalities should complementary contribute to the recognition process. 

Additionally Depth and Thermal information can increase robustness to head pose variations 

and changing illumination contexts. Depth also contributes with additional information about 

subtle changes in the geometry of the face. Multimodal face recognition systems have usually 

used two modalities [8, 14, 23, 29, 32]. Similar approaches for different, but related problems, 

like full body gender recognition have also been proposed [33]. Recently a database containing 

synchronised RGB, Depth, and Thermal (hereafter, RGB-D-T) images has been introduced in 

[18], including facial images of different rotations, illuminations, and expressions. The authors 

have highlighted the complementarity of different modalities motivating further research in 

this direction. 

The novelty of the proposed system in this paper is twofold: 

● Advancing the recent successful deep learning-based facial features, by 

combining them with classical hand-crafted facial features, like LBP, HOG, 

HAAR, and HOGOM for the purpose of finding complementary nature of these 

features through conducting extensive experiments. These experiments show that 

at least one of these classical facial features, specifically HOGOM [4], can 

complementarily contribute to the recognition performance obtained by deep 

learning-based facial features. 

● The above mentioned fusions of facial features, have been applied to the 

multimodal RGB-D-T facial database of [18], highlighting the effect of the 

proposed feature fusion in advancing the recognition results.  
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To the best of our knowledge, none of the above mentioned points, i.e., fusion of deep 

learning based features and classical appearance based facial features, specifically with 

HOGOM, and using a tri-modal facial database with such a fusion, have been studied before. 

The rest of this paper is organized as follows: the related work is reviewed in Section 2. The 

details of the proposed multimodal face recognition system are given in Section 3. The 

experimental results are then elaborated in Section 4 and finally Section 5 concludes the paper. 

 

2. Related Work 

 

This related work section has been written in three parts: first, we review some of the 

multimodal face recognition systems. Then, the related state-of-the-art deep learning-based 

systems are discussed. Next, the details of the HOGOM features which are shown to contribute 

positively to the fusion with deep learning-based facial features are revisited.  

 

2.1. Multimodal Face Recognition Systems 
 

Generally, face modalities are robust against some facial appearance variations, while 

sensitive to others. For example, depth images can handle changes caused by different poses 

to some extent, but they are susceptible to expression variations. For thermal images, they are 

sensitive to temperature changes of the surrounding environment. Thus, a reasonable way to 

utilize these modalities is to fuse them for the reduction of diverse corrupting factors, which 

usually affect different modalities in different ways [2]. 

Depth information has been widely used for face recognition using different techniques 

[3]. A 3D model can capture the geometry information of a face, which cannot be well 

represented in a 2D image. Range image is a common representation used in 3D applications. 

3D based techniques do offer a more suitable description of facial features than 2D models, 

increasing the robustness to viewpoint and lighting variations. However, the high cost of 

specialized 3D sensors limits their use in practical applications. With the progress in sensor 

technology, low cost sensors capable of capturing 3D information have been developed paving 

the way for multimodal systems based on RGB and depth (RGB-D). Such RGB-D cameras 

usually provide synchronised images of both color and depth. The color image characterizes 

the appearance and texture information of a face, while the depth image provides the distance 
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of each pixel from the camera, thus representing the geometry of the face to a certain degree. 

Exploiting RGB-D images has become popular in tackling various computer vision problems 

[9, 10, 21]. In [8, 14, 23], such RGB-D images have been used for face recognition. Another 

less commonly used modality is the infrared imagery [12]. A thermal infrared image records 

the amount of infrared radiation emitted by an object. The amount of radiation increases with 

temperature, therefore, this imagery allows us to see variations in temperature. When viewed 

through a thermal imaging camera, humans and other warmblooded animals become easily 

visible against the cool environment, with or without visible illumination. It has been shown 

that thermal images offer a promising alternative to intensity images for handling facial 

variations in face appearance due to changes of illumination [2]. In [18], a RGB-D-T face 

database was collected to perform face identification using synchronised RGB, depth and 

thermal images. In most cases, using such three modalities provides better identification 

performance than isolated and bi-modal approaches. 

 

2.2. Deep Learning-based Face Recognition Systems 
 

There are different deep learning techniques for face recognition. The main one is based 

on the idea of employing deep Convolutional Neural Network (CNN). CNN has been used for 

face recognition about two decades ago [13], however, it has achieved significant decrease in 

the recognition error rates just in recent years. A bright example of deep learning success in 

facial recognition has been introduced in [25] in which a deep network containing more than 

120 million parameters has been trained on the largest available database of four million facial 

images of 4000 individuals. The proposed performance is stated to be approaching the human-

level performance on the Labeled Faces in the Wild (LFW) database [11]. Another interesting 

video face recognition method based on deep learning is introduced in [7] wherein a stack of 

denoising autoencoders and deep Boltzmann machines are used. The fact of selecting 

significant frames for facial feature extraction and matching, and employing deep learning has 

resulted in state-of-the-art performance on the Youtube Faces and Point and Shoot Challenge 

in [7]. 

In [26] the authors enhanced the learning principles of deep convolutional networks and 

applied these discoveries to face recognition task. First, they have identified and explained the 

role of the bottleneck of the CNN as an important regularizer between training-set specificity 

and generality. Then, they have replaced the naive random subsampling of the training set with 
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a more advanced bootstrap process. Based on the proposed ideas authors have managed to 

improve face recognition accuracy on the LFW database [11]. 

 

2.3. HOGOM-based Face Recognition 
 

Discriminative facial features should describe the dissimilarities between different 

individuals and remain stable during the variation of the same individual. However, 

discriminability and robustness are difficult to be satisfied at the same time. Gabor filters can 

extract discriminative local texture of faces, but are not robust against large expression and 

illumination variations. In order to enhance the robustness of Gabor features, Chai et al. very 

recently encoded the Gabor filtering responses by using Ordinal Measures (OMs), which is 

named Gabor Ordinal Measures (GOMs) [4]. Unlike Gabor filters which calculate the 

quantitative values of filtering results, OMs encode the qualitative relationship between signals 

in different locations.  

GOMs first convolve a facial image with Gabor filters, and then binarize the magnitude, 

phase, real and imaginary filtering response using OMs. After that the OM binary codes are 

encoded into integers which can be treated as texture primitives. The statistical distributions of 

these texture primitives in different blocks are concatenated to form the final GOMs feature, 

and are used in form of Histograms of GOMs (HOGOM). HOGOMs combine the 

discriminability of Gabor filters and the robustness of OMs, and have achieved state-of-the-art 

performance on publicly available face image databases, such as FERET [19], AR [15] and 

large scale FRGC v2.0 [20]. 

The proposed system in this paper fuses these two types of state-of-the-art features: the 

hand-crafted feature of HOGOM, and the the facial features obtained by deep learning. The 

experimental results show that such a fusion advances the performance of both of these types 

of features when applied to a multimodal face recognition dataset.  

 

3. The Proposed System 

 

To find proper hand-crafted feature to be fused with deep learning-based facial features, 

we have extracted four well-known such features: LBP, HOG, HAAR, and HOGOM. 

Following the block diagram of the proposed system, shown in Figure 1, these hand-crafted 

features are extracted from each modality and independently normalized and, in the case of 
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HOGOM, reduced. These features are then concatenated into a single feature vector for training 

the Weighted Nearest Neighbour Classifier (WNNC)  identical to the one in [18]. At the same 

time, each modality is also processed by modality-specific CNN, performing a stratified 

sampling and augmentation at each training epoch. Lastly, the final classifier is obtained by 

fusing WNNC and CNN classifiers with different weights. 

The following subsections cover the HOGOM feature descriptors, the CNN architecture 

and training procedure, and the fusion between multiple modalities and classifiers. HOGOM 

and CNN have been further discussed in the following subsections because their fusion 

produces the best results, the details of the other descriptors can be found in their related 

references: LBP in [1], HOG in [5], and HAAR in [17]. 

 

3.1. HOGOM 
 

For extracting the HOGOM descriptor, faces were cropped using the ground truth 

provided in the dataset [18]. Ground truth data includes parameters of the face bounding box, 

which is based on the depth images. It provides reasonable stability of the region of interest 

(ROI) on a frame to frame level in the input sequences of the images and does not generate 

false detections. The first stage of the ROI detection algorithm is binarization of the depth 

image allowing to suppress the background. Next, the pixels corresponding to the body region 

are set to zero (the part exceeding the predetermined width limit). In the last step the rectangular 

region growing algorithm is applied on the binary image. The algorithm iteratively increments 

the size of the rectangular region, which is centered in the position of the mean of the binary 

image. The cost function is the ratio of sum of pixel values to the number of pixels in the current 

ROI. The iteration is terminated when the cost value is below the specified limit determining 

the parameters of the face bounding box. This box is used as a ground-truth for the database. 

The cropped faces were then resized to 128×96 pixels. The HOGOM descriptor has a 

dimensionality DHOGOM = Nscales×Norientation×Nbins×Nblocks. In our experiments we have used 

Nscales =5, Norientations =8, Nbins=16 and block of size is 32×32 pixels which divides the images 

in 12 blocks. The feature vector is then first normalized. Then, its dimensionality is reduced by 

half using PCA. Final dimension of the feature vector is 3840. Finally, following [18] two 

classification methods were used for testing the performance of the descriptor when used alone: 

WNNC and a linear SVM. Choosing these classifiers allows fair comparison of the results of 

the proposed system against those in the original paper. In the multimodality case the feature 



7 

 

vectors for each modality are concatenated before training the multimodal classifiers. The 

reader is referred to Tables 1-7 and Figures 4-5 for a presentation of the results and to Section 

4 for further discussion. 

                     

 

Figure 1: The block diagram of the proposed system. RGB, Depth and Thermal captures of the face are 

used for training modality specific CNNs for deciding if two samples are from the same person or not. The 

results are fused with a HOGOM trained WNNC and SVM.  

 

3.2. Convolutional Neural Networks 
 

The proposed CNN approach is implemented as a binary classification problem 

predicting whether two input frames correspond to the same person or not. The approach takes 

as input the rescaled facial regions of the two modality-specific frames to be compared as 

separate channels, training a separate CNN for each modality. The topology selected for the 

CNN is shown in Figure 2. It consists of three convolutional layers each followed by a 2×2 

max-pooling. The first convolutional layer C1 has 8 convolutional masks of size 9×9, the 

second layer C2 has 16 masks of size 7×7, and the third layer C3 has 16 masks of size 5×5. 

Finally, there is a 100-unit fully-connected layer, and an output layer with a single neuron, 

which predicts whether the two images are from the same subject or not. All neurons in the 

topology are Rectified Linear Units (ReLu) [6]. 

Preprocessing of the images is done first by transforming the facial bounding boxes of 

each modality into squared regions. The narrower dimension is expanded in order to match the 
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other one, afterwards cropping the squared region and rescaling it to a size of 100 x 100 pixels 

are performed. For the color and thermal modalities, the resulting images are normalized by 

dividing the intensity values by 255, also transforming the color images to grayscale. In the 

case of depth, before normalizing the depth maps, these are brought to the camera by 

subtracting the value of the nearest pixel, afterwards setting the maximum distance to 200 mm 

by thresholding the values that are further than this distance. This distance has been manually 

chosen in order to keep only the pixels corresponding to the head based on the two depth 

training set frames (first and last one) of each rotation sequence that are used for training 

regardless of the training partition size. The mean for each modality, calculated over the 

training instances, is subtracted from each frame.  

 

 

Figure 2: Topology of the proposed CNN. It consists of three convolutional layers, each followed by a 2×2 

max pooling layer, and finally, a fully connected layer. 

 

Stratified sampling is applied at each epoch to randomly select a subset of training 

instances, such that there is an equal amount of positive and negative instances, and an equal 

number of instances from each subject for both positive and negative instances. This kind of 

sampling is required as only around 4% of all possible pairs correspond to positives. 

Augmentation is used to increase the number of training instances available. Although 

all pairs of training frames can be used as training samples, providing a maximum of (51×25)2 

= 1,625,625 possible training pairs for the database in [18], the variation between contiguous 

frames is very small. In order to address this problem, at each epoch the sampled pairs are 

randomly flipped horizontally with a probability of 0.5. Furthermore, each individual frame for 

each pair is randomly displaced vertically and horizontally by ±5% and random noise in the 

±0.05 range is introduced. 

 

3.3. Multimodal and Model Fusion 
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Fusion of different modalities is done following two different approaches for WNNC and 

SVM by one side, and CNN. In the case of WNNC/SVM, early fusion of the features is applied 

to obtain a single multimodal model by concatenating the feature vectors of different modalities 

and training a single model using these features. In the case of CNNs, weighted late fusion is 

used, finding the optimal weights combining the outputs of each modality through least 

squares. While early fusion, both at the input image and the last hidden layer levels, was also 

considered, the resulting models were prone to overfitting in both cases. 

Weighted late fusion is used again when combining WNNC and CNN models, evaluating 

all possible pairs for each mode of variation. When fusing a WNNC with a CNN classifier, the 

three CNNs corresponding to each modality are directly combined with the target multimodal 

WNNC classifier instead of using the multimodal CNN classifiers. This is done in order to 

prevent restricting the weights assigned to each CNN modality, while at the same time allowing 

for early fusion of the modalities in the WNNC classifier, which should convey more 

flexibility. 

 

4. Experimental Results 

 

Experiments were conducted on the multimodal RGB-D-T face dataset first introduced 

in [18]. This dataset consists of 51 persons, mostly Caucasian men between 20 and 40 years 

old. Faces were captured under varying rotation, illumination and facial expression conditions 

in a controlled laboratory context (see Figure 3). Microsoft Kinect was used to capture RGB 

and Depth and an AXIS Q1922 sensor was used for capturing Thermal images. In total the 

dataset consists of 100 images for each variation context in each of the three modalities. This 

amounts to 900 images for each subject and a total of 45900 images for the whole dataset.  
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Figure 3: Example images from the RGB-D-T dataset used for experimenting: (a) Rotation. (b) Facial 

Expression. (c) Illumination variation of the same person captured in RGB, Depth and Thermal [18]. 

 

During the experiments we have used the same sample splitting protocol between training 

and testing samples as provided in [18]. Training was performed using 2, 5, 10 or 25 evenly 

spaced samples. 50 samples were used for testing. The ground truth ROI around the face 

provided by the dataset was used for cropping the facial regions of the samples.  

The results of the the WNNC and the SVM classifier trained with HOGOM were 

relatively modest compared with the descriptors previously used in [18]. For brevity and ease 

of understanding we present only the results obtained with the highest number of training 

samples. In Tables 1 to 4 we show Equal Error Rate (EER) for each modality and for all of 

them combined (early fusion is used as depicted in Figure 1). The results were obtained by 

using 25 training samples and extracting several different hand-crafted descriptors (LBP in 

Table 1, HOG in Table 2 and HOGOM in Table 3). In all cases we show the classification error 

obtained both by WNNC and SVM. In Table 4 we show results when training a CNN in similar 

conditions. In Figures 4 and 5 we show how the error dynamic depending on the number of 

training samples. For a complete set of results with different numbers of training samples, the 

interested reader is referred to Tables 8 and 9 in the Appendix. 

 

Table 1: Error over test data in % for LBP when trained with 25 samples per class. Results from [18]. 

 RGB D T All 

 
WNNC 

ROT. 23.6 21.8 31.5 18.5 
EXP. 0.7 1.9 1.2 0.7 

ILLUM. 10 4.8 3.8 3 

 
SVM 

ROT. 0.1 0.2 0.3 0 
EXP. 0.1 0 0.1 0 

ILLUM. 0 0 0 0 
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Table 2: Error over test data in % for HOG when trained with 25 samples per class. Results from [18]. 

 RGB D T All 

 
WNNC 

ROT. 21.2 35.5 26.4 22.4 
EXP. 0.6 6.5 0.8 0.6 

ILLUM. 6.5 14.3 4.5 4 

 
SVM 

ROT. 0.1 1.6 0.3 0 
EXP. 0 0.1 0.1 0 

ILLUM. 0.2 0.4 0 0.1 

 

Table 3:  Error over test data in % for HOGOM when trained with 25 samples per class. 

 RGB D T All 

 
WNNC 

ROT. 29.7 35.3 28.4 33.0 

EXP. 3.6 5.9 2.2 2.2 
ILLUM. 13.2 12.4 5.2 6.3 

 
SVM 

ROT. 0.7 0.3 0.2 0 
EXP. 0.1 0 0 0 

ILLUM. 0 0.2 0 0 

 

Table 4. Error over test data in % for CNN when trained with 25 samples per class. 

 RGB D T All 

 
CNN 

ROT. 5 18.6 12.1 4.3 
EXPR. 0.1 2.1 0.4 0 

ILLUM. 1.9 2.9 1.1 0.5 

 

From Tables 1 to 4, and also Figure 4 and Figure 5, one can see that the highest EER is 

produced in the case of rotation because of large variability of the face appearance. Regarding 

modalities, error is generally higher for the depth modality (except in the case of LBP 

representation, see Table 1) and modality fusion does not systematically decrease the error 

below all the other individual modalities. In the case of the linear SVM trained with HOGOM 

when increasing the number of training samples to 25, classification error reduces practically 

to zero (Table 3). 

 

In the case of CNNs, the individual modality predictions outperform in most cases all the 

descriptors extracted with WNNC, but have a higher error when compared with SVM methods 

(see Table 4). It is however important to note that the One-Versus-All approach used for the 

SVM models is not capable of working with new unseen subjects. This highly constrains their 

applicability and was the main reason for proposing new descriptors obtaining better results in 

a more general scenario. Weighted late fusion has been found to significantly reduce the error 

for the three modes of variation when using CNNs, especially for illumination changes.  
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Figure 4. WNNC and SVM Equal Error Rate (EER) when trained with all modalities. 

 

 

Figure 5. CNN Equal Error Rate (EER) when trained with all modalities. 
 

The weight assigned to each modality is shown in Table 5. In the case of CNNs, these 

values are obtained by first calculating the absolute value of each modality weight and 

afterwards normalizing the resulting weights vector. For the WNNC classifiers, where weights 

are always positive, it corresponds to the sum of weights assigned to the features of a given 
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modality divided by the sum of the weights for all features. In the case of CNN, visible and 

thermal images make a significant contribution to the final prediction for all modalities, with 

gray-scale information being especially important for rotation, and thermal information for 

illumination. Depth information, on the other hand, makes no contribution to the rotation case, 

and makes a small but important contribution to the expression and illumination modes of 

variation. When compared to the LBP descriptor, which obtains the best overall results for the 

WNNC method, CNN has a different weight distribution between modalities. Depth 

information has an overall importance similar to that of visual information in the case of LBP, 

while CNN assigns to it a much lower influence. The HOGOM features, on the other hand, 

give more importance to the thermal modality.  

 

Table 5: Late fusion weights for CNN and WNNC multimodal classifiers. 

 CNN LBP HOGOM 

 ROT. EXPR. ILLU. ROT. EXPR. ILLU. ROT. EXPR. ILLU. 

RGB 0.754 0.515 0.318 0.37 0.35 0.06 0.530 0.101 0.020 

D 0 0.065 0.117 0.37 0.15 0.25 0.158 0.002 0.006 

T 0.246 0.419 0.565 0.26 0.50 0.69 0.311 0.897 0.974 

 

To further improve the accuracy of the WNNC and CNN approaches, which in contrast 

to SVM have the ability to generalize to unseen individuals, late fusion has been attempted 

between all pairs of models. This means the space dimensionality does not change with higher 

populations. The same fusion scheme is valid for larger populations during training, and the 

fused models are applicable to unseen individuals. The results of fusion of all pairs of models 

for each mode of variation for WNNC and CNN approaches are shown in Table 6. While 

HOGOM is the worst performing descriptor for both rotation and expression modes of 

variation, when fused with the modality-specific CNNs, the lowest error is obtained. CNNs 

alone obtain an EER of 4.3, 0, and 0.5 for variation modes 1 to 3 (see Table 4), but when 

combined with HOGOM the EERs go down to 3.8, 0 and 0.4 (see Table 6). The fusion of the 

other WNNC models using different descriptors with the CNNs also slightly reduce the EER, 

except in the case of HOG features, and are in all cases better than the fusion of WNNC models. 

 

Table 6: EER over test data in % when applying late fusion to pairs of models using 25 training samples. 

 HOG HAAR HOGOM CNN 
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 ROT EXP ILL. ROT EXP ILL. ROT EXP ILL. ROT EXP ILL. 

LBP 20.3 0.6 3.7 18.6 0.7 3.5 17.1 0.8 2.5 4.1 0 0.5 
HOG - - - 23.3 0.6 3.6 19.2 0.5 2.2 4.3 0 0.5 

HAAR - - - - - - 25.4 1.8 6.1 4.2 0 0.5 
HOGOM - - - - - - - - - 3.8 0 0.4 

 

We hypothesize the reason why HOGOM better complements CNNs is its ability to both 

perform texture description and its multi-scale approach. Because the CNN models have a 

restricted amount of convolutions in the first two layers to prevent over-fitting, it is not capable 

of correctly describing textures. This likely makes HOGOM a good complement to the CNN 

models. The fusion of LBP (another texture descriptor) and CNNs further supports this 

argument, being the second best combination of models. Furthermore, HOGOM is a multi-

scale descriptor, which provides a certain degree of scale invariance which CNNs don’t possess 

except when using specific layers designed for that purpose [30, 31]. 

When trying to combine more than one model to CNN (Table 7), no further 

improvements are found. In fact, doing so produces a higher error than two of the models alone 

for some combinations. This is likely due to both over-fitting and the three-model combinations 

not providing further useful information compared to two individual models. 

 

Table 7: EER over test data in % when applying late fusion to CNN and two other models using 25 

training samples. 

 HOG HAAR HOGOM 

 ROT EXP ILL. ROT EXP ILL. ROT EXP ILL 

LBP 4.3 0 0.5 0.4 0 0.5 3.8 0 0.5 
HOG - - - 4.4 0 0.5 4.0 0 0.5 

HAAR - - - - - - 3.8 0 0.4 

 

5. Conclusion and future works  

In this work the performance of classical image descriptors has been compared to that of 

Convolutional Neural Networks and the recent descriptor Histograms of Gabor Ordinal 

Measures over a multimodal face recognition database. We have found that 1-vs-All SVM 

classifiers have the highest accuracy for face recognition, performing especially well with 

texture descriptors such as LBP or HOGOM. This demonstrates both the power of texture 

descriptors and 1-vs-All SVM classifiers, which is a good option when discriminating between 

a small set of individuals. This technique, though, cannot generalize to unseen individuals, 

which drives us to further analyse the other considered approaches. 
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We have shown that, while CNNs is by far the best approach capable of generalizing to 

unseen individuals when directly compared to pre-designed descriptors, their accuracy can be 

improved using a late-fusion approach. Even more interestingly, we have found that the best 

performing methods are not necessarily the best ones under a late fusion scheme. While 

HOGOM obtained a bad overall performance when compared to other descriptors, it had the 

greatest impact when combined with CNNs, obtaining the lowest EER on a multimodal 

benchmark facial database (see bottom-right part in Table 6). 

Combining only promising channels rather than all the channels might be a suitable 

choice for the trade-off between accuracy and efficiency. However, in this paper, we focused 

on the RGB-D-T based face recognition. That is, we did not consider fusion schemes like 2-

modal (RGB-D/RGB-T/D-T) face recognition, because we are interested in building a system 

whose results can be compared against the original work of [18] which uses three modalities 

of RGB-D-T. Hence, in all our three fusion schemes (early fusion WNNC, early fusion SVM, 

late fusion WNNC and CNN features), we combined all the three channels (3-modal). 

Furthermore, in this work we aimed to find the complementary value of individual hand-crafted 

features to CNN features for RGB-D-T based face recognition. Therefore, we did not exploit 

2-modal fusion schemes. However, it would be very interesting to try these fusion strategies 

for both efficiency and accuracy. For example, for each modality, we can employ the feature 

that achieves the lowest EER, and then consider both 2-modal and 3-modal face recognition. 

We would like to consider this in our future work. 
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Appendix 

Table 8: EER over test data in % for various modalities, classifiers, features for 0 (NCC), 2 and 5 training 

samples per class. HOGOM and CNN performances are added to previous results from [18] for LBP, HOG, 

and HAAR. 

 Number of training samples 

 0 (No Training (NCC)) 2 5 

  Modality RGB D T All RG

B 

D T All RG

B 

D T All 

W

N

N

C 

ROT. 

LBP 31.

9 

34.

6 

31.

3 

31.4 27.4 26.

1 

30 24.

8 

23.3 21.

5 

31.

1 

18.4 

HOG 30.

1 

25.

2 

34.

4 

32.5 24.9 38.

3 

31.

6 

30.

1 

21.3 36.

2 

26.

9 

23.4 

HAAR 24.

2 

31.

8 

32.

6 

27.5 - - - 27.

6 

- - - 28 

HOGOM - - - - 28.9 34.

7 

28.

8 

33.

4 

29.6 35.

5 

28.

4 

33.4 

EXPR. 

LBP 1.2 1.8 1.5 1.1 0.7 2.3 1.9 0.8 0.7 1.8 1.2 0.7 

HOG 1.6 6.1 2.2 1.7 0.7 6.6 0.9 0.6 0.7 6.5 0.9 0.6 

HAAR 2.6 8.8 3.2 2.8 - - - 2 - - - 2.1 

HOGOM - - - - 3.6 5.3 2.3 2.2 3.4 5.8 2.2 2.2 

ILLU

M. 

LBP 15.2 8.8 9.8 8.4 11.2 5.2 4.7 3.8 12.3 4.9 4.4 3.5 

HOG 15.7 16.

3 

8.7 11.2 8 24.

6 

4.9 4.4 8.2 15.

7 

4.9 4.5 

HAAR 21.3 23.

3 

16.

2 

16 - - - 15.

2 

- - - 15.3 

HOGOM - - - - 13.1 13 6 6.3 13 12.

6 

5.5 6.3 

S

V

M 

ROT. 

LBP - - - - 13 14.

1 

17.

1 

10.

6 

1.9 3.9 4.9 1.5 

HOG - - - - 13.5 22.

5 

16.

7 

13.

9 

2.5 8.2 4.2 2.3 

HOGOM - - - - 12.5 18.

5 

14.

8 

11.

3 

3.1 5.7 4.0 2.75 

EXPR. 

LBP - - - - 0.1 0.1 0.2 0 0.1 0.1 0.1 0 

HOG - - - - 0 0.6 0.1 0 0 0.2 0.1 0.1 

HOGOM - - - - 0 0.3 0 0 0.12 0 0 0 

ILLU

M. 

LBP - - - - 1.4 0.9 0.7 0.6 0.4 0.3 0.1 0 

HOG - - - - 2.3 4.8 1 1.3 0.6 2.4 0.1 0.3 

HOGOM - - - - 1.6 3.1 0.9 1.0 1.0 1.5 0.2

5 

0.3 

C

N

N 

ROT. - - - - 12.6 21.

4 

17.

5 

11.

6 

6.3 17.

6 

9.9 5.1 

EXP. - - - - 1.1 3.7 1.5 0.7 0.3 3.3 0.7 0.3 

ILLUM. - - - - 7.8 7 3.3 2.8 3.3 3.8 1.5 0.8 
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Table 9: EER over test data in % for various modalities, classifiers, features for 10 and 25 training samples 

per class. HOGOM and CNN performances are added to previous results from [18] for LBP, HOG, and 

HAAR. 

 Number of training samples 

 10   25 

 Modality RGB D T All RGB D T All 

W

NN

C 

R

O

T

. 

LBP 23.1 21.3 30.4 18.5 23.6 21.8 30.5 18.5 

HOG 20.5 35.3 25.7 21.8 21.2 35.5 26.4 22.4 

HAAR - - - 27.9 - - - 27.4 

HOGOM 29.7 35.1 28.4 33.1 29.7 35.3 28.4 33.0 

E

X

P

R 

LBP 0.6 2 1.2 0.7 0.7 1.9 1.2 0.7 

HOG 0.8 7.1 0.8 0.6 0.8 6.5 0.8 0.6 

HAAR - - - 2.1 - - - 2.1 

HOGOM 3.5 6.2 2.2 2.2 3.6 5.9 2.2 2.2 

I

L

L

U

M

I 

LBP 9.8 4.7 3.8 3 10 4.8 3.8 3 

HOG 6.6 13.8 4.4 3.9 6.5 14.3 4.5 4 

HAAR - - - 15.3 - - - 15.2 

HOGOM 13.3 12.4 5 6.3 13.2 12.4 5.2 6.3 

SV

M 

R

O

T

. 

LBP 0.5 1.1 0.9 0.2 0.1 0.2 0.3 0 

HOG 0.6 3.8 1 0.5 0.1 1.6 0.3 0 

HOGOM 1.3 2.2 1.1 0.9 0.7 0.3 0.2 0 

E

X

P

R

. 

LBP 0.1 0.1 0.1 0 0.1 0 0.1 0 

HOG 0 0.2 0.1 0 0 0.1 0.1 0 

HOGOM 0.2 0 0 0 0.1 0 0 0 

I

L

L

U

M

. 

LBP 0.1 0.1 0.1 0 0 0 0 0 

HOG 0 0.7 0 0 0.2 0.4 0 0.1 

HOGOM 0 0.2 0 0 0 0.2 0 0 

CN

N 

ROT. 5.3 17.1 9.9 4.4 5 18.6 12.1 4.3 

EXP. 0.2 2.5 0.6 0.2 0.1 2.1 0.4 0 

ILLUM. 2.1 2.9 0.8 0.4 1.9 2.9 1.1 0.5 
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