3,167 research outputs found

    Spin-polarized transport through a quantum dot: Anderson model with on-site Coulomb repulsion

    Get PDF
    We report on a theoretical analysis of transport characteristics of a spin-valve system formed by a quantum dot connecting to two ferromagnetic electrodes whose magnetic moments are oriented at an angle θ with respect to each other. We pay special attention to the effects of a finite on-site Coulomb repulsion U. Using the Keldysh nonequilibrium Green’s functions we derived a formula for the current in general terms of bias, temperature, and the parameters θ,U. We have studied the local density of states and nonlinear conductance of this device in the Kondo regime at different polarization angle θ. Our results suggest that the Kondo peaks in the local density of states and in the conductance can be modulated by θ.published_or_final_versio

    On the uncertain future of the volumetric 3D display paradigm.

    Get PDF
    Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available and so primarily focus on other issues that have impeded the broad commercialization and application of this display paradigm. This is of particular relevance given the recent resurgence of interest in developing commercially viable, general purpose, volumetric systems. We particularly consider image and display characteristics, usability issues and identify several advantageous attributes that need to be exploited in order to effectively capitalize on this display modality.N/

    L-Leucine Improves Metabolic Disorders in Mice With in-utero Cigarette Smoke Exposure

    Full text link
    Objectives: Maternal cigarette smoke exposure (SE) causes intrauterine undernutrition, resulting in increased risk for metabolic disorders and type 2 diabetes in the offspring without sex differences. L-leucine supplementation has been shown to reduce body weight and improve glucose metabolism in both obese animals and humans. In this study, we aimed to determine whether postnatal L-leucine supplementation in female offspring can ameliorate the detrimental impact of maternal SE. Methods: Female Balb/c mice (6-week) were exposed to cigarette smoke (SE, 2 cigarettes/day) prior to mating for 5 weeks until the pups weaned. Sham dams were exposed to air during the same period. Half of the female offspring from the SE and SHAM dams were supplied with L-leucine via drinking water (1.5% w/w) after weaning (21-day) for 10 weeks and sacrificed at 13 weeks (adulthood). Results: Maternal SE during pregnancy resulted in smaller body weight and glucose intolerance in the offspring. L-leucine supplement in Sham offspring reduced body weight, fat mass, and fasting blood glucose levels compared with their untreated littermates; however somatic growth was not changed. L-leucine supplement in SE offspring improved glucose tolerance and reduced fat mass compared with untreated littermates. Conclusions: Postnatal L-leucine supplement could reduce fat accumulation and ameliorate glucose metabolic disorder caused by maternal SE. The application of leucine may provide a potential strategy for reducing metabolic disorders in offspring from mothers who continued to smoke during pregnancy

    Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    Get PDF
    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA

    Molecular Modeling of the Interaction Between Stem Cell Peptide and Immune Receptor in Plants

    Get PDF
    © Springer Science+Business Media, LLC, part of Springer Nature 2020. Molecular docking enables comprehensive exploration of interactions between chemical moieties and proteins. Modeling and docking approaches are useful to determine the three-dimensional (3D) structure of experimentally uncrystallized proteins and subsequently their interactions with various inhibitors and activators or peptides. Here, we describe a protocol for carrying out molecular modeling and docking of stem cell peptide CLV3p on plant innate immune receptor FLS2

    Masking of Figure-Ground Texture and Single Targets by Surround Inhibition: A Computational Spiking Model

    Get PDF
    A visual stimulus can be made invisible, i.e. masked, by the presentation of a second stimulus. In the sensory cortex, neural responses to a masked stimulus are suppressed, yet how this suppression comes about is still debated. Inhibitory models explain masking by asserting that the mask exerts an inhibitory influence on the responses of a neuron evoked by the target. However, other models argue that the masking interferes with recurrent or reentrant processing. Using computer modeling, we show that surround inhibition evoked by ON and OFF responses to the mask suppresses the responses to a briefly presented stimulus in forward and backward masking paradigms. Our model results resemble several previously described psychophysical and neurophysiological findings in perceptual masking experiments and are in line with earlier theoretical descriptions of masking. We suggest that precise spatiotemporal influence of surround inhibition is relevant for visual detection

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    The Reform of Employee Compensation in China’s Industrial Enterprises

    Get PDF
    Although employee compensation reform in Chinese industrial sector has been discussed in the literature, the real changes in compensation system and pay practices have received insufficient attention and warrant further examination. This paper briefly reviews the pre- and post-reform compensation system, and reports the results of a survey of pay practices in the four major types of industrial enterprises in China. The research findings indicate that the type of enterprise ownership has little influence on general compensation practices, adoption of profit-sharing plans, and subsidy and allowance packages. In general, pay is linked more to individual performance and has become an important incentive to Chinese employees. However, differences are found across the enterprise types with regard to performance-related pay. Current pay practices are positively correlated to overall effectiveness of the enterprise

    Rectal Transmission of Transmitted/Founder HIV-1 Is Efficiently Prevented by Topical 1% Tenofovir in BLT Humanized Mice

    Get PDF
    Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (n = 43) were rectally inoculated with either the primary isolate HIV-1(JRCSF) or the MSM-derived transmitted/founder (T/F) virus HIV-1(THRO) within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1(JRCSF) and HIV-1(THRO), respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank p = 0.03) for HIV-1(JRCSF) and 0% (0/6; log rank p = 0.02) for HIV-1(THRO). This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides
    corecore