49 research outputs found

    First identification of primary nanoparticles in the aggregation of HMF

    Get PDF
    5-Hydroxymethylfurfural [HMF] is an important intermediate compound for fine chemicals. It is often obtained via hydrothermal treatment of biomass-derived carbohydrates, such as fructose, glucose and sucrose. This study investigates the formation of carbonaceous spheres from HMF created by dehydration of fructose under hydrothermal conditions. The carbonaceous spheres, ranging between 0.4 and 10 μm in diameter, have granulated morphologies both on the surface and in the interior. The residual solution is found to contain a massive number of primary nanoparticles. The chemical structure of the carbonaceous spheres was characterised by means of FTIR and NMR spectroscopies. Based on these observations, a mechanism involving the formation and aggregation of the nanoparticles is proposed. This mechanism differs considerably from the conventional understanding in the open literature

    Origin and evolution of a placental-specific microRNA family in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of short regulatory RNAs encoded in the genome of DNA viruses, some single cell organisms, plants and animals. With the rapid development of technology, more and more miRNAs are being discovered. However, the origin and evolution of most miRNAs remain obscure. Here we report the origin and evolution dynamics of a human miRNA family.</p> <p>Results</p> <p>We have shown that all members of the miR-1302 family are derived from MER53 elements. Although the conservation scores of the MER53-derived pre-miRNA sequences are low, we have identified 36 potential paralogs of MER53-derived miR-1302 genes in the human genome and 58 potential orthologs of the human miR-1302 family in placental mammals. We suggest that in placental species, this miRNA family has evolved following the birth-and-death model of evolution. Three possible mechanisms that can mediate miRNA duplication in evolutionary history have been proposed: the transposition of the MER53 element, segmental duplications and Alu-mediated recombination. Finally, we have found that the target genes of miR-1302 are over-represented in transportation, localization, and system development processes and in the positive regulation of cellular processes. Many of them are predicted to function in binding and transcription regulation.</p> <p>Conclusions</p> <p>The members of miR-1302 family that are derived from MER53 elements are placental-specific miRNAs. They emerged at the early stage of the recent 180 million years since eutherian mammals diverged from marsupials. Under the birth-and-death model, the miR-1302 genes have experienced a complex expansion with some members evolving by segmental duplications and some by Alu-mediated recombination events.</p

    Quantitative characterization of the focusing process and dynamic behavior of differently sized microparticles in a spiral microchannel

    Get PDF
    Abstract In this paper, a spiral microchannel was fabricated to systematically investigate particle dynamics. The focusing process or migration behavior of different-sized particles in the outlet region was presented. Specifically, for focused microparticles, quantitative characterization and analysis of how particles migrate towards the equilibrium positions with the increase in flow rate (De = 0.31-3.36) were performed. For unfocused microparticles, the particle migration behavior and the particlefree region&apos;s formation process were characterized over a wide range of flow rates (De = 0.31-4.58), and the emergence of double particle-free regions was observed at De C 3.36. These results provide insights into the design and operation of high-throughput particle/cell filtration and separation. Furthermore, using the location markers prefabricated along with the microchannel structures, the focusing or migration dynamics of different-sized particles along the spiral microchannel was systematically explored. The particle migration length effects on focusing degree and particle-free region width were analyzed. These analyses may be valuable for the optimization of microchannel structures. In addition, this device was successfully used to efficiently filter rare particles from a large-volume sample and separate particles of two different sizes according to their focusing states

    Topical Issue on Branching Dynamics at the Mesoscopic Scale

    No full text

    Numerical Study on Dynamics of Blood Cell Migration and Deformation in Atherosclerotic Vessels

    No full text
    A phase field model is used to study the effect of atherosclerotic plaque on hemodynamics. The migration of cells in blood flows is described by a set of multiple phase field equations, which incorporate elastic energies and the interacting effects of cells. Several simulations are carried out to reveal the influences of initial velocities of blood cells, cellular elasticity and block rates of hemodynamic vessels. The results show that the cell deformation increases with the growth of the initial active velocity and block rate but with the decrease of the cellular elasticity. The atherosclerotic plaque not only affects the deformation and migration of cells but also can promote the variation in hemodynamic properties. The atherosclerotic plaque causes a burst in cell velocity, and the greater the block rate and cellular elasticity, the more dramatic the variation of instantaneous velocity. The present work demonstrates that the phase field method could be extended to reveal formation atherosclerosis at the microscopic level from the perspective of hemodynamics

    Modeling of free dendritic growth in a gravity environment by lattice Boltzmann method

    No full text
    A two-dimensional model is developed to simulate dendrite growth and movement in a gravity environment. The model combines the features of cellular automaton and lattice Boltzmann methods. Two sets of distribution functions are adopted to calculate the melt flow and solute transport simultaneously. The fluid force acting on the dendrite is calculated by extending the basic flow simulation at the solid-liquid interface. Incorporating the force interaction between melt flow and solidified dendrite into the algorithm for dendritic growth, the movement of a growing dendrite in the flowing melt can be simulated. After model validation, the coupled model has been applied to simulate the evolution and motion of an individual nucleus that grows into a dendrite in the presence of gravitational force. It is found that the dendrite growth is strongly influenced by the fluid flow, producing an asymmetrical morphology that the dendrite grows faster in the upstream direction, whereas largely slower in the downstream direction. The growth process of dendritic side-branches is modeled in a high settling velocity without any artificial noise introduced. The melt flow triggered by the dendrite motion enhances the growth of the dendrite in the downward direction, which in turn influences the subsequent dendritic translation
    corecore