Quantitative characterization of the focusing process and dynamic behavior of differently sized microparticles in a spiral microchannel

Abstract

Abstract In this paper, a spiral microchannel was fabricated to systematically investigate particle dynamics. The focusing process or migration behavior of different-sized particles in the outlet region was presented. Specifically, for focused microparticles, quantitative characterization and analysis of how particles migrate towards the equilibrium positions with the increase in flow rate (De = 0.31-3.36) were performed. For unfocused microparticles, the particle migration behavior and the particlefree region's formation process were characterized over a wide range of flow rates (De = 0.31-4.58), and the emergence of double particle-free regions was observed at De C 3.36. These results provide insights into the design and operation of high-throughput particle/cell filtration and separation. Furthermore, using the location markers prefabricated along with the microchannel structures, the focusing or migration dynamics of different-sized particles along the spiral microchannel was systematically explored. The particle migration length effects on focusing degree and particle-free region width were analyzed. These analyses may be valuable for the optimization of microchannel structures. In addition, this device was successfully used to efficiently filter rare particles from a large-volume sample and separate particles of two different sizes according to their focusing states

    Similar works