1,462 research outputs found

    Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    Get PDF
    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain

    Effective scraping in a scraped surface heat exchanger: some fluid flow analysis

    Get PDF
    An outline of mathematical models that have been used to understand the behaviour of scraped surface heat exchangers is presented. In particular the problem of the wear of the blades is considered. A simple model, exploiting known behaviour of viscous flow in corners and in wedges, and accounting for the forces on the blade is derived and solutions generated. The results shows initial rapid wear but that the wear rate goes to zero

    Very strong intrinsic supercurrent carrying ability and vortex avalanches in (Ba,K)Fe2As2 superconducting single crystals

    Get PDF
    We report that single crystals of (Ba,K)Fe2As2 with Tc = 32 K have a pinning potential, U0, as high as 10^4 K, with U0 showing very little field depend-ence. In addition, the (Ba,K)Fe2As2 single crystals become isotropic at low temperatures and high magnetic fields, resulting in a very rigid vortex lattice, even in fields very close to Hc2. The rigid vortices in the two dimensional (Ba,K)Fe2As2 distinguish this compound from 2D high Tc cuprate superconductors with 2D vortices, and make it being capable of cearrying very high critical current.Flux jumping due to high Jc was also observed in large samples at low temperatures.Comment: 4 pages, 7 figures. submitte

    Effects of TIG Welding Parameters on Morphology and Mechanical Properties of Welded Joint of Ni-base Superalloy

    Get PDF
    AbstractThe influences of parameters of tungsten inert gas arc welding on the morphology, microstructure, tensile property and fracture of welded joints of Ni-base superalloy have been studied. Results show that the increase of welding current and the decrease of welding speed bring about the large amount of heat input in the welding pool and the enlargement of width and deepness of the welding pool. The increase of impulse frequency has the same effect on the microstructure compared with the increase of welding current. The effect of welding parameters on the tensile strength and fracture was analyzed. It is found that the root of welding joint is unwelded when the welding current is lower, so that the strength and elongation of welded joint are inferior. And the more welding defects in the welding zone and the more hard and brittle phase precipitates in the overheated zone when the welding current is too high. Consequently, the strength and plasticity go up first and then go down, i.e. they have a peak value with welding current increasing. In addition, the decrease of impulse frequency is beneficial to the strength of the welded joint

    Oxygen impurities in NiAl: Relaxation effects

    Get PDF
    We have used a full-potential linear muffin-tin orbital method to calculate the effects of oxygen impurities on the electronic structure of NiAl. Using the supercell method with a 16-atom supercell we have investigated the cases where an oxygen atom is substitutionally placed at either a nickel or an aluminum site. Full relaxation of the atoms within the supercell was allowed. We found that oxygen prefers to occupy a nickel site over an aluminum site with a site selection energy of 138 mRy (21,370 K). An oxygen atom placed at an aluminum site is found to cause a substantial relaxation of its nickel neighbors away from it. In contrast, this steric repulsion is hardly present when the oxygen atom occupies the nickel site and is surrounded by aluminum neighbors. We comment on the possible relation of this effect to the pesting degradation phenomenon (essentially spontaneous disintegration in air) in nickel aluminides.Comment: To appear in Phys. Rev. B (Aug. 15, 2001

    Interplay of superexchange and orbital degeneracy in Cr-doped LaMnO3

    Full text link
    We report on structural, magnetic and Electron Spin Resonance (ESR) investigations in the manganite system LaMn_{1-x}Cr_{x}O_{3} (x<=0.5). Upon Cr-doping we observe a reduction of the Jahn-Teller distortion yielding less distorted orthorhombic structures. A transition from the Jahn-Teller distorted O' to the pseudocubic O phase occurs between 0.3<x<0.4. A clear connection between this transition and the doping dependence of the magnetic and ESR properties has been observed. The effective moments determined by ESR seem reduced with respect to the spin-only value of both Mn^{3+} and Cr^{3+} ions

    Left-right asymmetry for pion and kaon production in the semi-inclusive deep inelastic scattering process

    Full text link
    We analyze the left-right asymmetry in the semi-inclusive deep inelastic scattering (SIDIS) process without introducing any weighting functions. With the current theoretical understanding, we find that the Sivers effect plays a key role in our analysis. We use the latest parametrization of the Sivers and fragmentation functions to reanalyze the π±\pi^\pm production process and find that the results are sensitive to the parametrization. We also extend our calculation on the K±K^{\pm} production, which can help us know more about the Sivers distribution of the sea quarks and the unfavored fragmentation processes. HERMES kinematics with a proton target, COMPASS kinematics with a proton, deuteron, and neutron target (the information on the neutron target can be effectively extracted from the 3^3He target), and JLab kinematics (both 6 GeV and 12 GeV) with a proton and neutron target are considered in our paper.Comment: 7 latex pages, 11 figures, final version for publication, with references update

    Theory of coherent acoustic phonons in InGaN/GaN multi-quantum wells

    Full text link
    A microscopic theory for the generation and propagation of coherent LA phonons in pseudomorphically strained wurzite (0001) InGaN/GaN multi-quantum well (MQW) p-i-n diodes is presented. The generation of coherent LA phonons is driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump laser and is treated theoretically using the density matrix formalism. We use realistic wurzite bandstructures taking valence-band mixing and strain-induced piezo- electric fields into account. In addition, the many-body Coulomb ineraction is treated in the screened time-dependent Hartree-Fock approximation. We find that under typical experimental conditions, our microscopic theory can be simplified and mapped onto a loaded string problem which can be easily solved.Comment: 20 pages, 17 figure

    Pairing symmetry and long range pair potential in a weak coupling theory of superconductivity

    Full text link
    We study the superconducting phase with two component order parameter scenario, such as, dx2y2+eiθsαd_{x^2-y^2} + e^{i\theta}s_{\alpha}, where α=xy,x2+y2\alpha = xy, x^2+y^2. We show, that in absence of orthorhombocity, the usual dx2y2d_{x^2-y^2} does not mix with usual sx2+y2s_{x^2+y^2} symmetry gap in an anisotropic band structure. But the sxys_{xy} symmetry does mix with the usual d-wave for θ=0\theta =0. The d-wave symmetry with higher harmonics present in it also mixes with higher order extended ss wave symmetry. The required pair potential to obtain higher anisotropic dx2y2d_{x^2-y^2} and extended s-wave symmetries, is derived by considering longer ranged two-body attractive potential in the spirit of tight binding lattice. We demonstrate that the dominant pairing symmetry changes drastically from dd to ss like as the attractive pair potential is obtained from longer ranged interaction. More specifically, a typical length scale of interaction ξ\xi, which could be even/odd multiples of lattice spacing leads to predominant s/ds/d wave symmetry. The role of long range interaction on pairing symmetry has further been emphasized by studying the typical interplay in the temperature dependencies of these higher order dd and ss wave pairing symmetries.Comment: Revtex 8 pages, 7 figures embeded in the text, To appear in PR
    corecore