80 research outputs found

    Orthogonally polarized bright–dark pulse pair generation in mode-locked fiber laser with a large-angle tilted fiber grating

    Get PDF
    We report on the generation of orthogonally polarized bright–dark pulse pair in a passively mode-locked fiber laser with a large-angle tilted fiber grating (LA-TFG). The unique polarization properties of the LA-TFG, i.e., polarization-dependent loss and polarization-mode splitting, enable dual-wavelength mode-locking operation. Besides dual-wavelength bright pulses with uniform polarization at two different wavelengths, the bright–dark pulse pair has also been achieved. It is found that the bright–dark pulse pair is formed due to the nonlinear couplings between lights with two orthogonal polarizations and two different wavelengths. Furthermore, harmonic mode-locking of bright–dark pulse pair has been observed. The obtained bright–dark pulse pair could find potential use in secure communication system. It also paves the way to manipulate the generation of dark pulse in terms of wavelength and polarization, using specially designed fiber grating for mode-locking

    Digital Transformation of High Voltage Isolation Control and Monitoring System for HVE-400 Ion Implanter

    Full text link
    HVE-400 ion implanter is special ion implantation equipment for semiconductor materials boron and phosphorus doping. The ion source and extraction deflection system are at high voltage platform, while the corresponding control system is at ground voltage position. The control signals and measurement signals of various parameters at the high-voltage end need to be transmitted between ground voltage and high voltage through optical fibers to isolate high voltage. Upgrading is carried out due to the aging of the optical fiber transmission control and monitoring system, which cannot work stably. The transformation replaces the original distributed single-point control method with an advanced distributed centralized control method, and integrates all control and monitoring functions into an industrial control computer for digital operation and display. In the computer software, two kinds of automatic calculation of ion mass number are designed. After upgrading, the implanter high-voltage platform control and monitoring system features digitalization, centralized control, high reliability, strong anti-interference, fast communication speed, and easy operation.Comment: 6 pages, 4 figures, 1 tabl

    Optical loading sensor based on single polarization fiber laser incorporating an intra-cavity 45°-TFG

    Get PDF
    We have experimentally demonstrated an active loading sensor system based on a fiber ring laser with single-polarization output using an intra-cavity 45°-tilted fiber grating (45°-TFG). When the laser cavity fiber subjected to loading, the laser output is encoded with the load and can be measured and monitored by a power metre. A loading sensitivity as high as 0.033/ (kg·m-1) has been achieved using this laser. The experiment results clearly show that single polarization fiber laser may be developed to a low-cost high-sensitivity loading sensor system

    Fibre Bragg gratings fabrication in four core fibres

    Get PDF
    Due to the limitation of the lens effect of the optical fibre and the inhomogeneity of the laser fluence on different cores, it is still challenging to controllably inscribe different fibre Bragg gratings (FBGs) in multicore fibres. In this article, we reported the FBG inscription in four core fibres (FCFs), whose cores are arranged in the corners of a square lattice. By investigating the influence of different inscription conditions during inscription, different results, such as simultaneous inscription of all cores, selectively inscription of individual or two cores, and even double scanning in perpendicular core couples by diagonal, are achieved. The phase mask scanning method, consisting of a 244nm Argon-ion frequencydoubled laser, air-bearing linear transfer stage and cylindrical lens and mirror setup, is used to precisely control the grating inscription in FCFs. The influence of three factors is systematically investigated to overcome the limitations, and they are the defocusing length between the cylindrical lens and the bare fibre, the rotation geometry of the fibre to the irritation beam, and the relative position of the fibre in the vertical direction of the laser beam

    All-fiber loading sensor based on a hybrid 45° and 81° tilted fiber grating structure

    Get PDF
    We experimentally demonstrate an all-fiber loading sensor system based on a 45° and an 81° tilted fiber grating (TFG). We have fabricated two TFGs adjacent to each other in a single fiber to form a hybrid structure. When the transverse load applied to the 81° TFG, the light coupling to the two orthogonally polarized modes will interchange the power according to the load applied to the fiber, which provides a solution to measure the load. For real applications, we further investigated the interrogation of this all-fiber loading sensor system using a low-cost and compact-size single wavelength source and a power meter. The experimental results have clearly shown that a low-cost high-sensitivity loading sensor system can be developed based on the proposed TFG configuration

    All-fiber loading sensor based on 45° and 81° tilted fiber gratings

    Get PDF
    Cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organisation. Therefore the development of new practicable and economical diagnostic tools to scrutinise the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals covering both ballistocardiography (below 20Hz) and audible heart sounds (20Hz upwards). The detection scheme is based upon an array of curvature/displacement sensors using fibre optic long period gratings interrogated using a variation of the derivative spectroscopy interrogation technique

    Microbiota in monocultured Litopenaeus vannamei vs. polyculture with Trachinotus ovatus

    Get PDF
    The structures of the microbial community in the intestine, aquaculture water, and sediment of Litopenaeus vannamei, both in monoculture and mixed culture with Trachinotus ovatus, were analyzed by sequencing 16S rRNA amplicons. 1,120,500 valid reads were obtained from 21 samples, and 3,767 operational taxonomic units (OTUs) were classified. In the two culture modes, the abundance and diversity of bacterial in the sediment were significantly higher than in the L. vannamei intestine under the monoculture mode, in the water and intestines of L. vannamei and T. ovatus under the mix-culture mode (P 0.05). The dominant phyla in the sediment under two culture modes were Proteobacteria, Bacteroidetes, and Chloroflexi. The microbial community structure in the water and L. vannamei intestine were similar in both culture modes. The dominant phyla included Cyanobacteria, Proteobacteria, and Actinobacteria, with their abundances ranging from 80.88% to 97.10%. Proteobacteria was the dominant phylum in each group of samples, and the dominant genus in both culture modes was GpIIa. There was little difference in microbial community structures under the two culture modes; while the culture mode did not affect the core phyla/genera, there were differences in relative abundance. The experimental results provide a reference for the exploration of efficient and specific probiotic screening and microbial formulation techniques

    SNR enhanced distributed vibration fiber sensing system employing polarization OTDR and ultraweak FBGs

    Get PDF
    A distributed fiber sensing system based on ultraweak FBGs (UWFBGs) assisted polarization optical time-domain reflectometry (POTDR) is proposed for load and vibration sensing with improved signal-to-noise ratio (SNR) and sensitivity. UWFBGs with reflectivity higher than Rayleigh scattering coefficient per pulse are induced into a POTDR system to increase the intensity of the back signal. The performance improvement of the system has been studied. The numerical analysis has shown that the SNR and sensitivity of the system can be effectively improved by integrating UWFBGs along the whole sensing fiber, which has been clearly proven by the experiment. The experimental results have shown that by using UWFBGs with 1.1 x 10-5 reflectivity and 10-m interval distance, the SNR is improved by 11 dB, and the load and vibration sensitivities of the POTDR are improved by about 10.7 and 9 dB, respectively

    Transcriptome analysis of <em>Marsupenaeus japonicus</em> hepatopancreas during WSSV persistent infection

    Get PDF
    White Spot Syndrome Virus (WSSV) can cause a large-scale death of cultured shrimp and significant damage to the shrimp farming industry. Marsupenaeus japonicus is one of the world's most important economically farmed shrimp. This study found that some M. japonicus survived the spontaneous outbreak of WSSV. Surprisingly, these virus-carrying shrimp showed no apparent illnesses or outbreaks of white spot disease in the subsequent cultivation, and their body size was substantially smaller than healthy shrimp, indicating a long-term fight between the host and the virus. To investigate this interesting phenomenon, we analyzed the transcriptomes of healthy shrimp and survived shrimp through the RNA-Seq platform, attempting to reveal the underlying molecular mechanism of the struggle between M. japonicus and WSSV. Transcriptional analysis showed that a total of 37,815 unigenes were assembled, with an average length of 1,193.34 bp and N50 of 2,049 bp. In the KEGG pathway, enrichment analysis of DEGs pathways related to immunity, biosynthesis, and growth metabolism was enriched, including pentose phosphate pathway, glycerophospholipid metabolism, fatty acid biosynthesis, Wnt signaling pathway, biosynthesis of amino acids, ascorbate, and aldarate metabolism. Our data showed a delicate balance between M. japonicus and WSSV infection: On the one hand, WSSV infection can cause host metabolism and biosynthesis disorders in the host, and the virus consumes a portion of the material and energy required for shrimp average growth and reproduction. If WSSV infection persisted for a long time, then the growth rate of M. japonicus decreased. On the other hand, the host can regulate immune defense to resist subsequent viral infection. This study reveals the underlying molecular mechanism of a long-term battle of M. japonicus against WSSV infection, providing novel insights for preventing WSSV persistent infection in M. japonicus and other farmed shrimp species

    An OTDR and gratings assisted multifunctional fiber sensing system

    Get PDF
    We report a distributed multifunctional fiber sensing network based on weak-fiber Bragg gratings (WFBGs) and long period fiber grating (LPG) assisted OTDR system. The WFBGs are applied for temperature, strain, and vibration monitoring at key position, and the LPG is used as a linear filter in the system to convert the wavelength shift of WFBGs caused by environmental change into the power change. The simulation results show that it is possible to integrate more than 4472 WFBGs in the system when the reflectivity of WFBGs is less than {10}^{-5}. Besides, the back-Rayleigh scattering along the whole fiber can also be detected which makes distributed bend sensing possible. As an experimental demonstration, we have used three WFBGs UV-inscribed with 50-m interval at the end of a 2.6-km long fiber, which part was subjected for temperature, strain, and vibration sensing, respectively. The ratio of the intensity of output and input light is used for temperature and strain sensing, and the results show strain and temperature sensitivities are 4.2 \times {10}^{-4}{/\mu \varepsilon } and 5.9 \times {10}^{-3}{{/ {^{\circ }}\textrm {C}}} , respectively. Detection of multiple vibrations and single vibration with the broad frequency band up to 500 Hz are also achieved. In addition, distributed bend sensing which could be simultaneously realized in this system has been proposed
    • 

    corecore