101 research outputs found

    Textural and biochemical changes of scallop Patinopecten yessoensis adductor muscle during low-temperature long-time (LTLT) processing

    Get PDF
    In this study, the effects of low-temperature long-time (LTLT) processing on the quality of Patinopecten yessoensis adductor muscle (PYAM) were investigated at 55°C. The texture of processed PYAM was characterized by textural profile analysis (TPA), and significant increases of cook loss, hardness, and shear force with time during LTLT processing were observed. The degradation of structural proteins was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and fragments with molecular weights of 208 kDa (myosin heavy chain, MHC), 97 kDa (paramyosin) and 35–40 kDa, respectively, were among the main products. Chemical characterization revealed elevated levels of activity in cathepsin L and caspase-3 and oxidation of proteins and lipids. Electron spin resonance spin trapping indicated reactive oxygen species (ROS) production in the PYAM during LTLT processing. Based on these results, it is proposed that the sequence of events in PYAM during LTLT processing includes ROS→ endogenous enzyme (involving caspase-3 and cathepsin L) activation →protein degradation→quality changes (texture and color). This revelation helps to further our understanding of the LTLT processing of PYAM, which would lead to better quality control for PYAM products

    Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

    Get PDF
    The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker's equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain's influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved

    Research on ultrasonic vibration grinding technology of SiCp/Al composites

    No full text
    In view of the difficulties in processing SiCp/Al materials by traditional grinding methods, the rapid wear of grinding tools, and the difficulties in obtaining high surface quality after processing, the ultrasonic vibration grinding method can significantly improve the processing effect. By analyzing the ultrasonic vibration trajectory of a single abrasive particle, it is concluded that its movement trajectory is a space ellipse shape, which can realize intermittent contact processing between the abrasive particle and the workpiece. The ultrasonic vibration grinding test is carried out on the SiCp/Al material with a volume fraction of 40% by using a resin-bonded diamond grinding head. Under different spindle speeds n, feed rates v, grinding depths ap and abrasive particle sizes d, the single-factor test method is used to detecte surface roughness of the workpiece. How each process parameter influences the Sa value of the workpiece surface roughness is obtained. And it is verified that ultrasonic vibration grinding of SiCp/Al can effectively improve the surface quality. The surface roughness of workpiece after ultrasonic vibration grinding decreases to 45 nm compared with 79 nm after ordinary grinding. The surface roughness of the workpiece first decreases and then increases with the increase of n, and it is the smallest when the speed is 1 800 r/min. The surface roughness of the workpiece increases with the increase of v and ap, and decreases with the decrease of d. And the optimal parameter combination in the test parameters is obtained: n=1 800 r/min, v=5 mm/min, ap=1 ÎĽm, d=4.5 ÎĽm

    Design of a Novel Trabecular Acetabular Cup and Selective Laser Melting Fabrication

    No full text
    The acetabular cups used in total hip arthroplasty are mostly made of dense metal materials with an elastic moduli much higher than that of human bone. This leads to stress shielding after implantation, which may cause aseptic loosening of the implant. Selective laser melting (SLM) technology allows us to produce tiny and complex porous structures and to reduce the elastic moduli of dense metals, thereby avoiding stress shielding. In the present study, rhombic dodecahedron porous structures with cell sizes of 1 mm, 1.5 mm, and 2 mm were designed. The strut diameter was changed to ensure that the porosity and pore size would meet the bone ingrowth requirements. Then, porous Ti6Al4V alloy specimens were printed using SLM, and compressive tests were carried out. The results showed that the compressive strength and elastic modulus values of the specimens with a cell size of 1.5 mm were in the range of 78.16–242.94 MPa and 1.74–4.17 GPa, respectively, which are in line with the mechanical properties of human cortical bone. Finite element analysis of a total hip joint model was carried out to simulate gait, and the surface of the trabecular acetabular cup was divided into 10 regions according to the stress distribution, with the stress interval in the range of 37.44–219.24 MPa. According to the compression test results, the gradient structure of Ti6Al4V alloy with different porosity was designed for trabecular coating. The gradient porous structure meets the mechanical requirements and is closer to the natural structure of human bone than the uniformly distributed porous structure

    Synthesis and characterization of heteroatom-enriched biochar from keratin-based and algous-based wastes

    No full text
    In this work, human hair and Enteromorpha prolifera were firstly used to synthesize heteroatom-doped biochars. The effects of pyrolysis temperature and holding time on the yield and pore structure of the obtained biochars were investigated. The different pyrolysis characteristics of hair and E. prolifera were compared through thermogravimetric analyser under nitrogen atmosphere. The pore properties, surface morphology and surface chemical composition were studied by N2 adsorption, scanning electron microscopy and X-ray photoelectron spectroscopy. The biochar from hair was typical dual O, N-doped material, which possessed 21.14 at.% of O-doped and 9.61 at.% of N-doped on the surface, while the biochar from E. prolifera was typical dual O, S-doped material, which possessed 30.68 at.% of O-doped and 5.18 at.% of S-doped on the surface. The present study provides a good prospect for development of heteroatomenriched biochar materials from renewable biomass wastes. (C) 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved

    Reduced magnitude and shifted seasonality of CO2 sink by experimental warming in a coastal wetland

    No full text
    Coastal wetlands have the highest carbon sequestration rate per unit area among all unmanaged natural ecosystems. However, how the magnitude and seasonality of the CO2 sink in coastal wetlands will respond to future climate warming remains unclear. Here, based on measurements of ecosystem CO2 fluxes in a field experiment in the Yellow River Delta, we found that experimental warming (i.e., a 2.4 degrees C increase in soil temperature) reduced net ecosystem productivity (NEP) by 23.7% across two growing seasons of 2017-2018. Such a reduction in NEP resulted from the greater decrease in gross primary productivity (GPP) than ecosystem respiration (ER) under warming. The negative warming effect on NEP mainly occurred in summer (-43.9%) but not in autumn (+61.3%), leading to a shifted NEP seasonality under warming. Further analyses showed that the warming effects on ecosystem CO2 exchange were mainly controlled by soil salinity and its corresponding impacts on species composition. For example, warming increased soil salinity (+35.0%), reduced total aboveground biomass (-9.9%), and benefited the growth of plant species with high salt tolerance and late peak growth. To the best of our knowledge, this study provides the first experimental evidence on the reduced magnitude and shifted seasonality of CO2 exchange under climate warming in coastal wetlands. These findings underscore the high vulnerability of wetland CO2 sink in coastal regions under future climate change

    A Multidimensional Spectral Transformer with Channel-Wise Correlation for Hyperspectral Image Classification

    No full text
    Convolutional neural networks (CNNs) have been developed as an effective strategy for hyperspectral image (HSI) classification. However, the lack of feature extraction by CNN networks is due to the network failing to effectively extract global features and poor capability in distinguishing between different feature categories that are similar. In order to solve these problems, this paper proposes a novel approach to hyperspectral image classification using a multidimensional spectral transformer with channel-wise correlation. The proposed method consists of two key components: an input mask and a channel correlation block. The input mask is used to extract relevant spectral information from hyperspectral images and discard irrelevant information, reducing the dimensionality of the input data and improving classification accuracy. The channel correlation block captures the correlations between different spectral channels and is integrated into the transformer network to improve the model’s discrimination power. The experimental results demonstrate that the proposed method achieves great performance with several benchmark hyperspectral image datasets. The input mask and channel correlation block effectively improve classification accuracy and reduce computational complexity

    Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements

    No full text
    Coastal wetlands are considered as a significant sink for global carbon because their organic-rich soils. Given exposed to shallow water tables, water from groundwater is transported upward to the root zone through capillary rise, thus soil moisture in coastal wetlands is relatively high even when there is no precipitation. We expected that as precipitation occurred, the soils in coastal wetlands might become quickly saturated and lead to the development of anoxic conditions. We further hypothesized that such anoxic conditions might decrease soil respiration by limiting oxygen availability and biological activities of roots and microorganisms. Based on continuous automated soil respiration data collected in a coastal wetland in the Yellow River Delta over 4 years (2012-2015), the results showed that on the annual scale, cumulative soil respiration was 317, 321, 231, and 274 g C m(-2) yr(-1) for 2012, 2013, 2014, and 2015, respectively, with an average of 286 g C m(-2) yr(-1). The rate of soil respiration increased exponentially with soil temperature during each year and its two seasons (growing season and non-growing season). In addition, soil respiration was significantly related to soil moisture during the growing season, but was not affected by soil moisture during the non-growing season. After each precipitation event, soil respiration was significantly negatively correlated with soil moisture under different initial soil water contents. There was a significant positive correlation between changes in soil respiration and changes in soil moisture following precipitation events. Moreover, the increase of soil moisture following precipitation events changed the temperature response of soil respiration. Our study indicated that precipitation events could decrease soil respiration by increasing soil moisture and inducing anoxic conditions in the coastal wetland. Therefore, we speculate that the continuation of decreasing precipitation and increasing temperature trends in the Yellow River Delta may increase soil carbon losses in the coastal wetland due to the increase in soil respiration

    Comparative de novo transcriptomics and untargeted metabolomic analyses elucidate complicated mechanisms regulating celery (Apium graveolens L.) responses to selenium stimuli.

    No full text
    Presently, concern regarding the effects of selenium (Se) on the environment and organisms worldwide is increasing. Too much Se in the soil is harmful to plants. In this study, Illumina RNA sequencing and the untargeted metabolome of control and Se-treated celery seedlings were analyzed. In total, 297,911,046 clean reads were obtained and assembled into 150,218 transcripts (50,876 unigenes). A total of 36,287 unigenes were annotated using different databases. Additionally, 8,907 differentially expressed genes, including 5,319 up- and 3,588 downregulated genes, were identified between mock and Se-treated plants. "Phenylpropanoid biosynthesis" was the most enriched KEGG pathway. A total of 24 sulfur and selenocompound metabolic unigenes were differentially expressed. Furthermore, 1,774 metabolites and 237 significant differentially accumulated metabolites were identified using the untargeted metabolomic approach. We conducted correlation analyses of enriched KEGG pathways of differentially expressed genes and accumulated metabolites. Our findings suggested that candidate genes and metabolites involved in important biological pathways may regulate Se tolerance in celery. The results increase our understanding of the molecular mechanism responsible for celery's adaptation to Se stress
    • …
    corecore