72 research outputs found

    Modelling the electromagnetic separation of non-metallic particles from liquid metal flowing through a two-stage multichannel

    Get PDF
    A two-stage multichannel was designed to increase the efficiency of separating non-metallic particles from liquid metal flowing through an alternating magnetic field. Numerical method was developed to calculate the particle concentration and separation efficiency of a zinc melt containing dross particles and verified by the experimental results. The distribution of particle concentration and axial fluid velocity changed significantly due to the added walls in the sub-channel, resulting in an abrupt increase in the residence time of the inner bulk melt with high particle concentrations and a remarkable increase in particle separation efficiency when flowing through the single-channel to sub-channels. A multistage and multichannel arrangement is hence recommended for further increase in the separation efficiency of an electromagnetic separator

    Ultrasound cavitation induced nucleation in metal solidification: an analytical model and validation by real-time experiments

    Get PDF
    Microstructural refinement of metallic alloys via ultrasonic melt processing (USMP) is an environmentally friendly and promising method. However, so far there has been no report in open literature on how to predict the solidified microstructures and grain size based on the ultrasound processing parameters.In this paper, an analytical model is developed to calculate the cavitation enhanced undercooling and the USMP refined solidification microstructure and grain size for Al-Cu alloys. Ultrafast synchrotron X-ray imaging and tomography techniques were used to collect the real-time experimental data for validating the model and the calculated results. The comparison between modeling and experiments reveal that there exists an effective ultrasound input power intensity for maximizing the grain refinement effects for the Al-Cu alloys, which is in the range of 20-45 MW/m2. In addition, a monotonous increase in temperature during USMP has negative effect on producing new nuclei, deteriorating the benefit of microstructure refinement due to the application of ultrasound

    Study of High Efficiency Flow Regulation of VIGV in Centrifugal Compressor

    Get PDF
    Variable inlet guide vane (VIGV) is used to control the mass flow and generate prewhirl in centrifugal compressors. Due to the tip clearance of the guide vanes and the defect of the traditional guide vane profiles, the mass flow regulation of VIGV is limited, resulting in a large waste of compressed gas. Two kinds of inlet flow channels were proposed to eliminate the influence of tip clearance. These structures were numerically investigated at different setting angles. The results show that the improved channels not only expand the range of mass flow regulation, but also reduce the power and increase the efficiency of the compressor. Ten kinds of guide vane profiles, including different thickness distribution, camber line profile, were selected to compare with the original one and with each other. In the premise of ensuring the performance of compressor, the best guide vane profile was selected. The results show that reducing the guide vane thickness, increasing the guide vane camber angle, and increasing the distance between the maximum camber position and the leading edge of guide vane can help expand the range of mass flow regulation. The achievement of this research can effectively improve the flow regulation ability of VIGV and the performance of compressor

    3D local atomic structure evolution in a solidifying Al-0.4Sc dilute alloy melt revealed in operando by synchrotron X-ray total scattering and modelling

    Get PDF
    Using synchrotron X-ray total scattering and empirical potential structure refinement modelling, we studied systematically in operando condition the disorder-to-order local atomic structure transition in a pure Al and a dilute Al-0.4Sc alloy melt in the temperature range from 690 °C to 657 °C. In the liquid state, icosahedral short-range ordered Sc-centred Al polyhedrons form and most of them with Al coordination number of 10–12. As the melt is cooled to the semisolid state, the most Sc-centred polyhedrons become more connected atom clusters via vertex, edge and face-sharing. These polyhedrons exhibit partially icosahedral and partially face-centred-cubic symmetry. The medium-range ordered Sc-centred clusters with face-sharing are proved to be the “precursors” of the L12 Al3Sc primary phases in the liquid-solid coexisting state

    The impacts of increased heat stress events on wheat yield under climate change in China

    Get PDF
    China is the largest wheat producing country in the world. Wheat is one of the two major staple cereals consumed in the country and about 60% of Chinese population eats the grain daily. To safeguard the production of this important crop, about 85% of wheat areas in the country are under irrigation or high rainfall conditions. However, wheat production in the future will be challenged by the increasing occurrence and magnitude of adverse and extreme weather events. In this paper, we present an analysis that combines outputs from a wide range of General Circulation Models (GCMs) with observational data to produce more detailed projections of local climate suitable for assessing the impact of increasing heat stress events on wheat yield. We run the assessment at 36 representative sites in China using the crop growth model CSM-CropSim Wheat of DSSAT 4.5. The simulations based on historical data show that this model is suitable for quantifying yield damages caused by heat stress. In comparison with the observations of baseline 1996-2005, our simulations for the future indicate that by 2100, the projected increases in heat stress would lead to an ensemble-mean yield reduction of –7.1% (with a probability of 80%) and –17.5% (with a probability of 96%) for winter wheat and spring wheat, respectively, under the irrigated condition. Although such losses can be fully compensated by CO2 fertilization effect as parameterized in DSSAT 4.5, a great caution is needed in interpreting this fertilization effect because existing crop dynamic models are unable to incorporate the effect of CO2 acclimation (the growth enhancing effect decreases over time) and other offsetting forces

    Anisotropic interpolation theorems of Musielak-Orlicz type

    No full text
    Abstract Anisotropy is a common attribute of Nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations { A k : k ∈ Z } {Ak:kZ}\{A^{k}: k\in\mathbb{Z}\} , where A is a real n × n n×nn\times n matrix with all its eigenvalues λ satisfy | λ | > 1 λ>1|\lambda|>1 . Let φ : R n × [ 0 , ∞ ) → [ 0 , ∞ ) φ:Rn×[0,)[0,)\varphi: \mathbb{R}^{n}\times[0, \infty)\to[0,\infty) be an anisotropic Musielak-Orlicz function such that φ ( x , ⋅ ) φ(x,)\varphi(x,\cdot) is an Orlicz function and φ ( ⋅ , t ) φ(,t)\varphi(\cdot,t) is a Muckenhoupt A ∞ ( A ) A(A)\mathbb {A}_{\infty}(A) weight. The aim of this article is to obtain two anisotropic interpolation theorems of Musielak-Orlicz type, which are weighted anisotropic extension of Marcinkiewicz interpolation theorems. The above results are new even for the isotropic weighted settings

    Microstructural Characterization of Thermal Barrier Coatings Glazed by a High Power Laser

    No full text
    Plasma-sprayed thermal barrier coatings were laser-glazed by a high power laser in order to modify the structures. The microstructure of laser-glazed TBCs is investigated. The result indicates that a smooth and dense glazed surface with craters and a network of microcracks is obtained after laser-glazing. The laser-glazed region consists of a columnar microstructure. There are segmentation microcracks in the laser-glazed coatings, which don’t run through the coatings along thickness. Surface roughness has been reduced significantly for the laser treated ceramic coatings

    A quantitative study of solute diffusion field effects on heterogeneous nucleation and the grain size of alloys

    No full text
    The nucleation ability of inoculating particles inside the solute diffusion zone around growing grains during alloy solidification is studied using a spherical, equiaxed dendritic grain model coupled with a new modified free growth model to predict the final grain size of cast aluminium alloys with improved accuracy. We show that the nucleation potency of inoculating particles is reduced by the solute field that develops close to existing, growing equiaxed grains under near isothermal conditions. Solute suppressed nucleation leads to much lower nucleated grain densities, higher nucleation undercoolings and longer times to recalescence when further nucleation events are halted. Under solute suppressed conditions, nucleation events occur in two stages: an initial transient nucleation before significant solute build-up and then continuous nucleation. The significance of the transient nucleation regime depends upon the size of the transient solute diffusion zone, and has been explored using the model. Model predictions suggest that the grain refinement of alloys of high solute content is controlled primarily by solute suppressed nucleation conditions
    corecore