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ABSTRACT 29 

 30 

China is the largest wheat producing country in the world. Wheat is one of the two major 31 

staple cereals consumed in the country and about 60% of Chinese population eats the grain 32 

daily. To safeguard the production of this important crop, about 85% of wheat areas in the 33 

country are under irrigation or high rainfall conditions. However, wheat production in the 34 

future will be challenged by the increasing occurrence and magnitude of adverse and extreme 35 

weather events. In this paper, we present an analysis that combines outputs from a wide range 36 

of General Circulation Models (GCMs) with observational data to produce more detailed 37 

projections of local climate suitable for assessing the impact of increasing heat stress events 38 

on wheat yield. We run the assessment at 36 representative sites in China using the crop 39 

growth model CSM-CropSim Wheat of DSSAT 4.5. The simulations based on historical data 40 

show that this model is suitable for quantifying yield damages caused by heat stress. In 41 

comparison with the observations of baseline 1996-2005, our simulations for the future 42 

indicate that by 2100, the projected increases in heat stress would lead to an ensemble-mean 43 

yield reduction of –7.1% (with a probability of 80%) and –17.5% (with a probability of 96%) 44 

for winter wheat and spring wheat, respectively, under the irrigated condition. Although such 45 

losses can be fully compensated by CO2 fertilization effect as parameterized in DSSAT 4.5, a 46 

great caution is needed in interpreting this fertilization effect because existing crop dynamic 47 

models are unable to incorporate the effect of CO2 acclimation (the growth enhancing effect 48 

decreases over time) and other offsetting forces.    49 

 50 

KEY WORDS: Extreme weather events; heat stress; probabilistic assessment; wheat yield; 51 

climate change, China. 52 

53 



Version of the article accepted for publication in Climatic Change published by Springer online 12 Jan 2017. Published 
version available at: http://link.springer.com/article/10.1007/s10584-016-1866-z  
Accepted version downloaded from SOAS Research Online: https://eprints.soas.ac.uk/23476/   
 

2 
 

1. INTRODUCTION 54 

China is the largest wheat producing country in the world, with a share of 11% in global 55 

wheat areas and 17% in global wheat production during the 2014-2015 marketing year 56 

(USDA, 2016).  Wheat is the staple food grain in north China and is eaten in the form of 57 

steamed bread and noodles. Chinese government and famers have worked very hard to 58 

maintain record or near-record levels of wheat production at about 130 million tons in recent 59 

years. However, strong domestic demand for premium quality wheat has continued to result 60 

in significant wheat imports at a scale of 2 to 6.8 million tons per year during 2011-2015 61 

(FAO- GIEWS, 2016; USDA, 2016).  China’s effort to maintain basic self-sufficiency in 62 

wheat supply in the future will further face the challenge posed by global warming and the 63 

resultant increase in the occurrence and magnitude of adverse and extreme weather events, 64 

including heat stress. An improved understanding of this new challenge will be of great 65 

importance not only for food security in the country but also for the stability and 66 

sustainability of the world’s food market.  67 

There is a growing body of literature that employs various crop-growing models to 68 

simulate the impact of increasing temperature during the growing season on crop production 69 

(e.g., Lobell & Asner 2003; You et al. 2009; Asseng et al. 2011, 2015; Liu and Tao 2013; 70 

Tao and Zhang 2013; Deryng et al. 2014). However, these studies mostly considered the 71 

impact of growing season mean temperature on crop development and yield. Teixeira et al. 72 

(2013) construct a daily yield damage intensity factor within a 30-day period centered on 73 

flowering to estimate the potential yield damage caused by high daily temperatures. Their 74 

damage intensity factor ranges from 0 when daytime temperatures (not maximum) are less 75 

than or equal to a crop specific critical temperature and increased linearly to a maximum 76 

value of 1 when day temperature reached a limiting upper threshold. The method is attractive 77 

in its simplicity, but it cannot account for processes of crop growth and development. In this 78 

research we assess the impact of high daily temperatures on wheat growth and development 79 

at thirty-six representative observation stations in China (cf. Table S1) and to quantify yield 80 

damage caused by heat stress events.        81 

The crop growing model employed in this study is the CropSim module in the cropping 82 
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system model (CSM) of the Decision Support System for Agro-technology Transfer (DSSAT) 83 

(Jones et al. 2003; Hoogenboom et al. 2010). DSSAT is process-oriented and dynamic. It has 84 

been widely used for simulating the collective effects of crop genetics, management practices, 85 

and weather and soil conditions on the growth, development, and yield of individual crops for 86 

more than 25 different crops in various countries around the world,
1
 and recently for 87 

assessing the impact of rising seasonal mean temperatures on wheat yield (Asseng et al. 88 

2015). The CSM-CropSim has a multiplying algorithm to represent crop’s initial response to 89 

elevated CO2, but the algorithm is unable to parameterize the process of CO2 acclimation, i.e., 90 

the growth enhancing effect of elevated CO2 decreases over time (Long et al. 2004; Smith 91 

and Dukes 2013). We activate this algorithm in our simulations for taking into account the 92 

potential CO2 fertilization effect but with cautions in interpreting the relevant results.  93 

To quantify yield damage caused by heat stress events, a challenging issue is how best to 94 

combine outputs from a wide range of GCMs with observational data, so as to produce robust 95 

future climate data in daily-step for crop impact assessment. Because the current GCMs are 96 

incapable of properly simulating daily variation of atmosphere owing to their coarse 97 

resolutions, which means that the drivers of local climate variation are not captured (Maurer 98 

and Hidalgo 2008), and more importantly, poor representation (e.g., parameterization) of 99 

physics, the daily weather output of GCMs should not be used directly as input into the 100 

CSM-CropSim simulation model. It was reported that certain distortions in daily weather 101 

variability can seriously bias crop model simulations (Semenov and Porter 1995; Baron et al. 102 

2005). To address this issue, we employ a pseudo-global warming (PGW) method, in which 103 

the climate perturbation (or global warming signal) fields produced by GCMs are 104 

superimposed onto observed historical daily weather series at specific locations. With the 105 

PGW method, we can obtain a new daily data set that includes the future climate change 106 

signals produced from monthly mean data of GCMs’ projection, which is widely regarded as 107 

being the most reliable so far; and the characteristics of daily weather events under the 108 

present-day climate, which is most likely to be preserved in the future. The PGW approach is 109 

                                                             
1
 For an informative review, see Timsina and Humphreys (2006). 
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based on the procedures developed in Schär et al. (1996) and has been adopted in many 110 

climate model downscaling studies and applications (Tubiello et al. 2000; Kawase et al. 2009; 111 

Rasmussen et al. 2011; Yoshikane et al. 2012; Lauer et al. 2013). 112 

In the simulations, we work with 96 climate change scenarios, which are produced by 113 

applying the PGW procedure to 30 GCMs under 4 Representative Concentration Pathway 114 

(RCP) scenarios in the CMIP5 (Phase 5 of Coupled Model Inter-comparison Project) of the 115 

IPCC Fifth Assessment Report (cf. Table S2). Wheat growth simulations of the 116 

CSM-CropSim Wheat model under these 96 scenarios produce 960 (96×10 years) yield 117 

estimations at each station in each focal period. This in turn leads to 960 yield-loss/gain 118 

(yield in each scenario minus yield in the baseline) results at each station in each focal period. 119 

We use the frequency distribution of these 960 yield-loss/gain results to proxy the probability 120 

distribution of yield changes. This naturally leads to a probabilistic assessment of the impact 121 

of heat stress events. This probabilistic assessment method is potentially applicable for other 122 

crops and in other jurisdictions.  123 

 124 

2. MATERIALS AND METHODS 125 

2.1 Study Sites 126 

Both winter wheat and spring wheat grow in China, typically in rotation with other crops 127 

such as maize and rice. Winter wheat accounts for about 95% of China’s total wheat output, 128 

with more than 75% of the crop produced in 5 provinces located on the North China Plain, 129 

which are Henan, Shandong, Hebei, Anhui, and Jiangsu, in the descending order of output 130 

share (FAO- GIEWS, 2016; USDA, 2016). A USDA’s estimation indicates that about 85% of 131 

wheat areas is under irrigation or high rain-fall conditions (USDA, 2006) and therefore our 132 

presentation mainly focuses on the results under the irrigated condition. 133 

We selected 36 agro-meteorological observation stations based on the following criterions. 134 

They (1) represent the typical cropping system for wheat cultivation in China; (2) differ in 135 

terms of geographic and climatologic characteristics; and (3) have over 10 years of records of 136 

wheat crop management information and weather data (including planting, anthesis and 137 

harvest dates, crop yield, as well as daily records of minimum and maximum temperature, 138 
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precipitation, and solar radiation). Of these 36 stations, 26 are winter wheat stations and 10 139 

are spring wheat stations. General information on the location, climate and wheat cropping 140 

calendar at each of these stations is shown in Table S1. The order of stations in all tables and 141 

figures of this paper follows the order of planting dates (from the earliest to the latest).  142 

 143 

2.2 CSM-CropSim Wheat Model 144 

Crop simulation models are designed to assess the impacts of multiple climate factors on 145 

crop growth in a way considering how these factors interact with crop growth and yield 146 

formation processes that are sensitive to climate. Therefore they are widely employed in 147 

climate impact studies in the cropping sector (Challinor et al. 2014; Xiong et al. 2010; Ju et al. 148 

2013). We employ the CSM-CropSim Wheat model of the DSSAT V4.5 to assess the impact 149 

of climate change and climate variability on wheat development and growth. Similar to other 150 

process-oriented crop dynamic models, the CSM-CropSim Wheat calculates daily 151 

phenological development (i.e., vegetative growth, flowering, grain growth, maturity and 152 

senescence phases) and biomass growth in response to environmental (soil and climate) and 153 

management (crop variety, planting conditions, N fertilization, and irrigation) factors. This 154 

model is routinely used for quantifying wheat yields under current conditions as well as under 155 

climate change scenarios across a wide range of environments in different countries (e.g., 156 

Challinor et al. 2005; Palosuo et al. 2011), including China (e.g., Xiong et al. 2008, 2010).  157 

The overall temperature response of the CSM-CropSim wheat model is determined by 158 

the integration of a number of individual responses in the wheat growth cycle. Hunt and 159 

White (2013) present a technical overview of temperature response settings in the model. Its 160 

input files with information on crop management have a section dealing with environmental 161 

modifications. This setting allows a user to set up a sequence of simulation runs with the 162 

same general management, but with different conditions, for instance different sets of daily 163 

maximum and/or minimum air temperatures. Asseng et al. (2015) systematically test 30 164 

different wheat crop models of the Agricultural Model Inter-comparison and Improvement 165 

Project (AGMIP) against field experiments. The tests are for growing season mean 166 

temperatures, which ranged from 15C to 32C, including experiments with artificial heating. 167 
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Their results show that the CSM-CropSim wheat model outperformed other models in terms 168 

of simulating anthesis and maturity dates, with an average performance in terms of simulating 169 

yield.   170 

Elevated CO2 atmospheric concentrations decrease rates of photorespiration and initially 171 

enhance rates of photosynthesis and growth by a significant margin for C3 crops. This effect 172 

is represented by a simple multiplying algorithm with regard to the net assimilation rate. The 173 

multiplier values changed linearly from 1.0 at 330 ppm CO2 to 1.25 at 660 ppm CO2 and then 174 

to 1.43 at 990 ppm CO2 (Hoogenboom et al. 2010). However, now we know that the above 175 

initial enhancement effect diminishes over time, a phenomenon known as CO2 acclimation 176 

(Long et al. 2004; Bloom et al. 2010), or can be eliminated by joint water and nitrogen 177 

limitation (Reich et al. 2014).
2
 The simple multiplying algorithm in CSM-CropSim is unable 178 

to capture the effect of this acclimation process and therefore, we must be cautious in 179 

interpreting the simulation results on the effect of CO2 fertilization. 180 

  181 

2.3 Cultivar Parameters  182 

The crop cultivar parameters, which are named genetic coefficients in DSSAT, 183 

quantitatively describe how a particular genotype responds to environmental factors. For 184 

example, field experiments reported in Fischer (1985) show a good correlation between 185 

kernel number and incident solar radiation in the 30 days preceding anthesis and a 186 

proportional relationship between the stem weight at anthesis and the grain number. The 187 

CSM-CropSim Wheat model approximates these relationships in mathematical constructs. 188 

However, because the exact quantification of the factors determining grain numbers are not 189 

well understood, the CSM-CropSim Wheat model needs to calibrate three cultivar 190 

coefficients based on field observations of crop growth process to compute grain numbers per 191 

                                                             
2
 Some other forces may also bring in eliminating effects. For example, rising levels of atmospheric CO2 is 

highly likely to increase the severity of wheat diseases, thus reducing yields (Váry et al. 2015); and disease 

levels can become worse when the plants and pathogens have been acclimatized to the higher concentrations of 

CO2 beforehand. Furthermore, weeds and other undesirable plants experience CO2 fertilization as well. 
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plant as determined by the cultivar’s genetic potential, canopy weight, average rate of 192 

carbohydrate accumulation during flowering, and temperature, water and nitrogen stresses 193 

(Jones et al. 2003). These three cultivar coefficients are: G1 or the kernel number coefficient, 194 

presented as the number of seeds per unit canopy weight at anthesis (#/g); G2 or the kernel 195 

weight coefficient, presented as normal seed weight under optimum conditions (mg); and G3 196 

or the spike number coefficient, presented as the normal dry weight (total, including grain) of 197 

one unstressed stem at maturity (g). Such coefficient calibration makes the application of the 198 

model cultivar- and location-specific, and consequently, the sensitivity results are also 199 

cultivar- and location-specific.  200 

Calibration of cultivar parameters itself is a knowledge- and technical-demanding work 201 

and our calibration for each of the thirty-six stations, which is based on the DSSAT-provided 202 

Generalized Likelihood Uncertainty Estimation method, has been published in Tian et al. 203 

(2012).  204 

 205 

2.4 Incorporating Natural Adaptation of the Growing Cycle 206 

We incorporate the natural adaptation of the growing cycle under heat stress in two steps. 207 

Simulations in the first step do not alter the sowing dates of the baseline but allow the 208 

growing cycle after the sowing dates to follow the growing dynamics specified in the 209 

CSM-CropSim wheat model, which means a natural adaptation of the growing cycle to the 210 

new weather pattern. In the second step, we extend the natural adaptation simulations to 211 

include changes on sowing dates.  212 

In the simulations, the irrigated condition means that when the effective water content in 213 

the 0-20cm soil layer is below 80% of moisture retention capacity, automatic irrigation set 214 

in the model takes place. Other management measures are set at the optimal levels to avoid 215 

disturbances caused by variations in management measures.  216 

 217 

2.5 Dataset  218 

Our analysis of climate change and climate variability is based on the simulations and 219 

projections of 30 GCMs used in the CMIP5 for the IPCC Fifth Assessment Report (AR5). In 220 
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the CMIP5, radiative forcing scenarios are derived from representative concentration 221 

pathways (RCPs) (Moss et al. 2010; van Vuuren et al. 2011). Monthly minimum temperature, 222 

maximum temperature, precipitation, and solar radiation from historical runs and future 223 

scenarios are used and the climate data are obtained from 96 runs of projections for the early 224 

century (2016–2025), middle century (2046–2055), and the end of the century (2091–2100) 225 

under the RCP scenarios. Table S2 lists the GCMs used in this study, including model 226 

resolution, scenarios, and availability. A more detailed documentation of CMIP5 models can 227 

be found at http://cmip-pcmdi.llnl.gov/cmip5/.   228 

Observed daily data (minimum and maximum temperatures, sunshine hours, 229 

precipitation) for the period of 1996-2005, which served as the baseline for the 36 stations, 230 

were provided by the Chinese Meteorological Data Center. Solar radiation was estimated 231 

using empirical global radiation models based on observed daily sunshine hours (Pohlert, 232 

2004). Field data at the study sites, including anthesis and harvest dates, were also provided 233 

by the Chinese Meteorological Data Center (Table S1). Soil data were taken from Tian et al. 234 

(2012). 235 

 236 

2.6 PGW Approach 237 

In the PGW approach, the difference between present and future climate conditions 238 

simulated by GCMs was chosen to represent the climate warming signal or perturbation. To 239 

make the climate warming signal possess as little spatial variation (mostly from weather 240 

perturbations) as possible, the decadal climatology is used to average out the weather. The 241 

climate perturbation field (climate warming signal) is then added to the current weather field 242 

for the selected years, by linearly interpolating from monthly climatologies to each specified 243 

time period. In more detail, the climate warming perturbation field is obtained by subtracting 244 

the current (1996–2005) monthly 10-yr climatology from a future (2016–2025, 2046–2055, 245 

and 2091–2100, respectively) monthly 10-yr climatology, both from the same GCM 246 

projection.
3
 The climate perturbation field is then added to the current weather field. The 247 

                                                             
3
 For daily data, herein 10 year periods are considered sufficient to generate a climatology. Longer, 20 or 30 

year periods should be used to obtain monthly climatologies. 

http://cmip-pcmdi.llnl.gov/cmip5/
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difference between climatological fields used here to represent the climate warming signal 248 

must have as little spatial variation (mostly from weather perturbations) as possible, so the 249 

decadal climatology is used to average out the weather. 250 

The signaling variables include minimum temperature, maximum temperature, 251 

precipitation, and solar radiation. The new daily data set is obtained by superposing the 252 

climate perturbation field to the observed daily data at each of the 36 stations. The 253 

superposing is done through linear interpolation from the monthly climatological predictions 254 

to each period in the observational daily data, with an assumption that monthly mean is valid 255 

on the 16
th

 of each month. The new daily data include the future climate change signals of the 256 

GCM perturbation while retaining the characteristics of daily weather events observed in the 257 

historical time-series. This was considered to be the most probable distribution in the future 258 

based on GCM information. This is because the climate perturbation’s primary impact is on 259 

the large-scale planetary waves and associated thermodynamics, while the weather patterns 260 

entering the domain boundary remained structurally identical in both simulations in terms of 261 

frequency and intensity. Weather events can nonetheless evolve within the regional model 262 

domain due to altered planetary flow and thermodynamics (Rasmussen et al. 2011). 263 

 264 

2.7 Definition of Heat Stress in Thermal Sensitive Periods 265 

There is a large body of literature identifying the cardinal temperature thresholds for 266 

different phenological processes in wheat under experimental conditions. As summarized in 267 

the survey reports of Russell and Wilson (1994) and Porter and Gawith (1999), 31-32C are 268 

commonly regarded as the upper base temperature during the period immediately before 269 

anthesis. The official disaster grading standard of China Meteorological Administration 270 

(CMA-PAD, 2007) regards 32C as the upper base temperature for defining heat stress events 271 

during the period prior to anthesis in China. 272 

We double check the applicability of this official threshold by carrying out the following 273 

two sets of tests under the base-line climate. First, we test yield losses caused by imposing a 274 

single-day heat stress on the observed anthesis day for the consideration that short periods of 275 

heat stress during flowering period cause pollen indehiscence, disrupt pollination, decrease 276 
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the ability of pollen to germinate, and decrease the rate of pollen tube growth (Jagadish et al. 277 

2010; Yadav et al. 2011). Second, we apply the above single-day heat stress event to a period 278 

from the 30
th

 day before anthesis to the 6
th

 day after anthesis so as to detect the most sensitive 279 

periods before and after anthesis. The results show that grain numbers are significantly 280 

reduced as a result of single-day heat in the period spanning from the 20
th

 day before anthesis 281 

to the anthesis day, when compared to the impacts prior to this 20-day interval. In contrast, 282 

the effect of single-day heat stress on each of the 6 days after anthesis is not significant. 283 

These two tests show that the period spanning from the 20
th

 day before anthesis to the 284 

anthesis day is the period most sensitive to heat stress featured by the maximum daily 285 

temperature exceeding 32C. 286 

For the grain-filling period, the upper base temperature suggested in the literature is 287 

between 33.4 and 37.4C (Russell and Wilson, 1994; Porter and Gawith, 1999). Therefore, it 288 

is not a surprise that yield reductions due to single-day heat-stress event above 32°C after 289 

anthesis is not significant in our tests. To identify the upper base temperature during the 290 

grain-filling period for popular cultivars in China, we test the impact of three consecutive 291 

days of heat-stress with maximum daily temperature exceeding 35°C during the grain-filling 292 

period. The results indicates that the yield reduction impact of such a heat stress event takes 293 

effect about one-week after anthesis, and imposing the same event on later days but before 294 

the end of the grain filling period will generate a similar level of damage.  295 

Following the above findings, our thermal sensitivity assessments for the future climate 296 

conditions will focus on the following two periods: (a) The period spanning from the 20
th

 day 297 

before anthesis to the anthesis day, we name it the “pre-anthesis period”, in which heat stress 298 

occurs if single-day maximum temperature exceeds 32°C. (b) The period spanning from the 299 

1
st
 to 20

th
 day after anthesis, we name it the “grain-filling period”, in which heat stress occurs 300 

when maximum daily temperatures exceed 35°C on three consecutive days. 301 

 302 

3. RESULTS 303 

3.1 Frequency and Intensity of Heat Stress Events 304 

Please note that we work with a set of climate change signaling variables, include 305 
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minimum temperature, maximum temperature, and precipitation, in the CSM-CropSim 306 

simulations. Because the ensemble-mean precipitation during the wheat growth season 307 

increases, by a moderate or significant scale at all study sites except Longhai, from the 308 

baseline of 1996-2005 to 2046-2055 and 2091-2100, and the decreases of precipitation in 309 

Longhai are less than 3.4%, as shown in Table S3, our discussion in this paper mainly 310 

focuses on the impact of heat stress.    311 

Table 1 reports the projected mean increases in the frequency of heat stress occurrence at 312 

each of the 36 study sites. It shows that the increases in the frequency of heat stress 313 

occurrence during both the pre-anthesis and grain-filling periods at the spring-wheat stations 314 

are much more significant than those at the winter-wheat stations. In the pre-anthesis period 315 

and compared with the baseline, the ensemble-mean frequency of heat stress occurrence is 316 

projected to increase by about 8 (probability: 54%), 12 (70%), and 18 (78%) days/decade by 317 

2016-2025, 2046-2055, and 2091-2100, respectively, at the winter-wheat stations. In contrast, 318 

the corresponding figures at the spring wheat sites are 30 (60%), 41 (85%), and 55 (88%) 319 

days/decade. During the grain-filling period and in comparison with the baseline, the 320 

ensemble-mean frequency of heat stress occurrence increases by about 5 (44%), 9 (62%), and 321 

15 (70%) days/decade by 2016-2025, 2046-2055, and 2091-2100, respectively, at the 322 

winter-wheat stations; and by 22 (58%), 31 (76%), and 44 (83%) days/decade at the 323 

spring-wheat sites.  324 

To visualize the changes, Figures S2 and S3 depict the time series of the assembled 325 

maximum, mean, and minimum of the projected changes in monthly mean (Fig. S2) and 326 

maximum (Fig. S3) temperature from the baseline of 1996-2005, for each of the selected nine 327 

stations in the wheat production zone of northern China. All these time series show a rising 328 

trend. The assembled maximum shows the steepest rise in all stations, which implies (a) an 329 

increase in the intensity and (b) an increase in the variability of heat stress. Tables S4 and S5 330 

summarize the assembled and decadal mean of the above-mentioned two changes from the 331 

baseline of 1996-2005 to each of the three periods: 2016-2025, 2046-2055, and 2091-2100, 332 

respectively. They show a trend of increase in both monthly mean and maximum 333 

temperatures at all study sites and the probability of such increase is between 92% and 100%.  334 
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 335 

(Tables 1, 2 and Figure 1 about here) 336 

 337 

3.2 Ensemble Projections of Wheat Yield under the Irrigated Condition 338 

   Table 2 reports the summary statistics of our simulations in terms of ensemble-mean yield 339 

changes, probability of yield change, and standard deviation of yield change relative to the 340 

baseline under the irrigated condition. Figure 1 presents the corresponding box plots. Table 2 341 

and Figure 1 show that both the extent and probabilities of yield reduction increase with the 342 

GCM projected warming trend, at all 36 stations. To put this numerically, the ensemble-mean 343 

yield loss in comparison with the baseline will be 4.7 (with a probability of 71%), 5.4 (75%) 344 

and 7.1 (80%) percent by 2016-2025, 2046-2055, and 2091-2100, respectively. This suggests 345 

an increased risk of reduced yield in the middle and end of this century. In addition, the 346 

distributions of yield losses are increasingly skewed to the left when moving from 2016-2025 347 

to 2091-2100, as evidenced by the co-increases of the standard deviation and the probability 348 

of yield loss in Table 2 and box plots in Figure 1. In contrast to distributions without severe 349 

skewness, this high and increasing left-skewness indicates that the increase in standard 350 

deviation does not necessarily imply increasing uncertainty in mean yield losses. This finding 351 

enriches the existing literature in the climate change impact assessment field. 352 

Consistent with the higher sensitivity of spring wheat to heat stress (Tian et al., 2012) 353 

and stronger future warming at the spring wheat stations, the yield losses in spring wheat 354 

stations are generally more severe than their winter-wheat counterparts in terms of percentage 355 

reduction. Spring wheat yield is projected to decrease by 8.2 (with a probability of 93%), 356 

12.8 (96%), and 17.5 (96%) percent on average by 2016-2025, 2046-2055, 2091-2100, 357 

respectively.  358 

There is an increasing body of literature assessing the impact of rising temperatures on 359 

wheat production. The most comprehensive one in this literature is Asseng et al. (2015), 360 

which systematically tests 30 wheat crop models against field experiments in 30 global 361 

locations, with warming signals imposed on growing season mean temperatures. In 362 
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comparison with their results at two winter wheat stations in China,
4
 our results of 7% yield 363 

reduction with a standard deviation of 9.6% by the end of the century are in line with the high 364 

end of the yield losses in their results under a 2C increase in seasonal mean temperatures and 365 

lower than their results with a 4C increase in seasonal mean temperatures. In comparison 366 

with their results at the only spring wheat station, Harbin, which is located in far north of 367 

Northeast China, our results of 17.5% yield reduction with a standard deviation of 14% is in 368 

line with their results based on an imposed 4C increase in seasonal mean temperature. 369 

 370 

3.3 Natural Adaptation of Crop Growing Cycle 371 

We note that warming would allow for earlier planting of spring wheat and earlier ending 372 

of winter wheat dormancy, and this in turn would allow the crop to mature earlier, avoiding 373 

heat stress occurred later. Therefore, in our simulations, we allow for the natural adaptation 374 

of crop growing cycle to new climate patterns, meaning that the end of dormancy and mature 375 

dates will be determined endogenously by the model according to the growth dynamics of the 376 

cultivar under the new warming conditions.  377 

In addition, we also run simulations on postponing the winter wheat plating dates within 378 

a window of 28 days and on bringing forward the spring wheat plating dates within a window 379 

of 28 days. The results for winter wheat do not show a statistically significant mitigation 380 

effect at virtually all winter wheat stations. The results for spring wheat at the two stations in 381 

Xingjian show that about 50-60% of the heat-stress induced yield losses can be avoided by 382 

this simple adaptation measure, but the results at other spring wheat stations do not produce 383 

statistically significant mitigation effect. 384 

 385 

3.4 Ensemble Projections of Wheat Yield under the Rain-fed Condition and 386 

Considering CO2 Fertilization Effect 387 

Although rain-fed wheat production accounts for less than 15% of total wheat production 388 

in China (USDA, 2006, 2016) and wheat growth at all 36 study sites are under irrigated 389 

                                                             

4
 They are Luancheng station in Hebei Province of North China Plain and Nanjing station in the lower reach of 

Yangtze River Basin. 
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condition, we run simulations at all stations under rain-fed conditions. Table S6 reports the 390 

summary statistics of this set of simulations and Figure S4 presents the corresponding box 391 

plots. They show that the ensemble-mean yield will increase, in comparison with the baseline, 392 

by 7.9, 12.2 and 15.4 percent for winter wheat and by 28.1, 30.3, and 30.5 percent for spring 393 

wheat in 2016-2025, 2046-2055, and 2091-2100, respectively. Such increases mainly result 394 

from the significant increase in precipitation during the wheat growing season. As reported in 395 

Table S3, in comparison with the baseline, the ensemble-mean increases in precipitation 396 

during the wheat growing season will be 18.9, 31.6, and 38.5 percent at the 26 winter wheat 397 

stations, and 50.1, 78.5, and 74.6 percent at the 10 spring wheat stations by 2016-2025, 398 

2046-2055, and 2091-2100, respectively. However, even the highest yield-increase of 30.5% 399 

cannot compete with the gain from irrigation, which typically stands at a level of 75% 400 

(USDA, 2006, 2016). 401 

Tables S7 and S8 are the counterparts of Tables 2 and S6, respectively, when considering 402 

the CO2 fertilization effect. Figures S5 and S6 presents the corresponding box plots. Table S7 403 

and Figure S5 indicate that with reference to the baseline, although the incorporation of CO2 404 

fertilization effect under the irrigated condition cannot reverse the yield losses by 2016-2025, 405 

it will result in yield increases by 8.4 and 16.9 percent at winter wheat stations and by 3.4 and 406 

9.3 percent at spring wheat stations by 2046-2055 and 2091-2100, respectively. Under the 407 

rain-fed condition, the effect of CO2 fertilization becomes more significant. The gain on the 408 

ensemble-mean yield will be 17.6, 42.5, and 70.2 percent for winter wheat and 39.6, 64.6, 409 

and 93.2 percent for spring wheat by 2016-2025, 2046-2055, and 2091-2100, respectively 410 

(Table S8 and Figure S6). This means that by the end of this century, the yield gain from the 411 

combined effect of increased rainfall and CO2 fertilization will have the potential to fully 412 

match the yield gain from irrigation and thus reduce irrigation water demand. However, as we 413 

discussed in Section 2.2, such yield gain could be illusive because the growth enhancing 414 

effect of CO2 decreases over time and the parameterization of DSSAT model is unable to 415 

incorporate such acclimation process.    416 

 417 

4. DISCUSSION AND CONCLUSION 418 
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Wheat is one of the two major staple cereals consumed in China and about 60% of 419 

Chinese population eats the grain daily. Basic self-sufficiency of wheat supply in the future 420 

will be of fundamental importance not only for food security in China but also for the 421 

sustainability of the world’s food market. However future wheat production in China will 422 

face the challenge posed by the increasing occurrence and magnitude of adverse and extreme 423 

weather events such as heat stress. In this research we first combine outputs from a wide 424 

range of General Circulation Models (GCMs) with observational data to produce more 425 

detailed projections of local climate suitable for assessing the impact of increasing heat stress 426 

events on wheat yield. This is done by applying the Pseudo-global Warming Method (PGW) 427 

method to the outputs of 96 GCM-RCP combinations to effectively couple observed trend in 428 

historical weather fields with the difference components of the global warming signal 429 

produced by GCMs. These PGW-enhanced ensembles of climate change scenarios provide a 430 

robust way for ensuring a reliable probabilistic assessment of climate change impact on crop 431 

yield.  432 

We then employ the CSM-CropSim Wheat model of DSSAT 4.5 to simulate wheat 433 

development and growth processes under current and future climate conditions at 36 434 

representative observation stations in the major wheat growing areas of China. The 435 

simulations under current climate conditions indicate that the thermal sensitivity assessments 436 

should focus on two critical periods – one spanning from the 20
th

 day preceding flowering to 437 

the anthesis day, in which heat stress event occurs if single-day maximum temperature 438 

exceeds 32°C; and the other spanning from the 1
st
 to the 20

th
 day after anthesis, in which heat 439 

stress events occur if maximum daily temperature exceeds 35°C on three consecutive days. 440 

The ensemble of future climate conditions shows increasing frequency and intensity of 441 

heat stress incidence. The probability of such increase is also increasing with time. The 442 

CSM-CropSim simulations under the 96 climate change scenarios provide a probability 443 

assessment of future yield losses caused by heat stress events, which incorporate the natural 444 

adaptation of crop growing cycle to new climate conditions.  Our discussion in this 445 

concluding section focuses on irrigated wheat production because it accounts for more than 446 

85% of the total wheat production in China. The results show ensemble-mean yield 447 
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reductions at all 36 sites, with an increasing trend in terms of both yield reduction extent and 448 

the probability of yield reduction. In comparison with the baseline 1996-2005, the extent and 449 

probability of yield reduction by 2091-2100 are 7.1% and 80%, respectively, for winter wheat, 450 

and 17.5% and 96%, respectively, for spring wheat. The results for winter-wheat are in line 451 

with the high end of the yield losses in Asseng et al. (2015) under a 2C increase in seasonal 452 

mean temperatures at Luancheng and Nanjing stations. The results for spring wheat are in 453 

line with the results of Asseng et al. (2015) on an imposed 4C increase in seasonal mean 454 

temperature at the Harbin station. Although the CO2 fertilization effect as parameterized in 455 

DSSAT 4.5 can compensate these losses, such fertilization effect might be illusive because 456 

the effect of CO2 acclimation (i.e., the growth enhancing effect decreases over time) and 457 

other offsetting forces are not considered in the parameterization of existing crop growth 458 

models (Smith and Dukes 2013). 459 

Two limitations of this research are worth mentioning. First, despite the advantage of the 460 

PGW method in generating coherent and robust scenarios which preserve the characteristics 461 

of observed daily weather events while incorporating GCM-derived increases in frequency 462 

and intensity, it is unable to consider the nonlinear interaction between climate change and 463 

inter-annual variations in regional climate systems. The approach also implies the assumption 464 

that the same frequency and intensity of weather perturbations occur in the regional 465 

simulation domain for mean conditions of future climate (Rasmussen et al. 2011). These two 466 

weaknesses mean that the uncertainty caused by changes in inter annual variability is still not 467 

accounted for in the probability assessment of this research. Second, the simulation results 468 

from one crop model only are subject to the limitations on thermal-sensitivity in this crop 469 

model. As highlighted in Asseng et al. (2013; 2015), a greater proportion of the uncertainty in 470 

climate change impact assessments can be attributed to variations across crop models. While 471 

the present study enriches the literature by assessing the impact of daily heat stress events 472 

under future climate change on wheat growth and development with the assistance of a highly 473 

dynamic crop model, future assessments will benefit from extended analyses using multiple 474 

crop models.  475 

 476 
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Table 1. Changes in the frequency of heat stress relative to the baseline (in days/decade)  601 

 2016-2025 2045-2055 2091-2100 

Station Pre-anthesis Grain-filling Pre-anthesis Grain-filling Pre-anthesis Grain-filling 

Winter wheat station 

Tacheng (TC) 21.8 11.4 28.8 20.4 40.6 35.4 

Ruoqiang (RQ) 70.7 63.7 85.4 82 102.9 102.1 

Tongzhou (TZ) 4.3 5.8 8.0 10.3 15.5 19.4 

Linfen (LF) 14.5 6.1 20.1 11.4 29.8 21.8 

Taigu (TG) 8.2 4.3 14.1 9.5 24.5 20.7 

Jinghai (JH) 4.9 2.1 8.7 4.6 16.7 10.9 

Tai-an (TA) 2.3 0.5 4.1 1.5 8.6 5.3 

Dingxian (DN) 7.6 8.5 12.8 14.9 21.4 26.8 

Linyi (LY) 7.2 4.5 12.6 7.1 20.6 10.3 

Wugong (WG) 12.4 8.9 16.1 12.3 22.1 13.6 

Xuzhou (XZ) 4.6 1 6.8 2.6 11.5 6.7 

Tianshui (TS) 17 2.4 23.9 5 34.4 12.9 

Lasa (LS) 0.8 0.1 2.5 0.5 10.3 0.8 

Zhumadian (ZM) 4.0 4.2 6.1 5.8 10.7 11.2 

Kashi (KS) 12.2 5.4 21.5 13.6 37 29.7 

Nangong (NG) 11.5 9.4 17.5 12.8 29.1 18.2 

Zhengzhou (ZZ) 10.8 3.1 15.5 4.3 18.8 9.2 

Pu-an (PA) 6.9 3.6 11 6.1 17.9 15.5 

Hefei (HF) 2.4 2.8 4.2 5.3 8.5 8.9 

Kunming (KM) 0.5 0.1 1.0 0.1 3.1 1.0 

Baoshan (BS) 0.2 0.1 0.3 0.1 0.5 0.4 

Wenjiang (WJ) 0.5 0.7 1.1 1.2 3.4 3.5 

Songjiang (SJ) 0.1 0.2 0.6 1 1.8 2.8 

Macheng (MC) 1.5 2.1 3.4 3.7 7.6 8.7 

Jiangjin (JJ) 0.3 1.7 0.7 2.8 2.4 6.1 

Longhai (LH) 0.2 0.1 0.3 0.1 0.5 0.1 

Spring wheat station 

Jiuquan (JQ) 30.8 7.0 36 13.9 49.3 24.4 

Tulufan (TL) 91.7 105.1 107 122.3 120.8 136.2 

Dunhuang (DH) 56.1 46.9 73.5 70.5 92.3 92.4 

Dingxi (DX) 0.4 0.1 1.2 0.6 8.3 5.2 

Guyuan (GN) 1.4 0.0 4.6 0.6 12.9 6.7 

Huangyuan 

(HY) 
0.2 2.1 1.4 4.6 8.5 9.7 

Guyang (GY)  74.6 29.2 93.5 42 114.8 63.6 

Aletai (AL) 43.6 7.7 58.5 16.2 72.5 28.4 

Zhangbei (ZB) 6.7 1.4 12.8 3.5 24.4 9.2 

Huma (HM) 27.7 18.7 39.6 26.6 55.2 40.4 

Note: Specific to this research, pre-anthesis period spans from the 20
th

 day before anthesis to the anthesis day, 602 

and grain-filling period spans from the 1
st
 to 20

th
 day after anthesis.  603 

 604 

605 
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Table 2. Ensemble mean yield changes, probability of yield loss, and standard deviation (S.D.) 606 

of yield change relative to the baseline and under irrigated condition 607 

 2016-2025 2045-2055 2091-2100 

 

 

Station 

Mean yield 

change in % 

(Probability 

in %) 

S.D. in kg/ha 

(as % of 

baseline 

yield) 

Mean yield 

change in % 

(Probability 

in %) 

S.D. in kg/ha 

(as % of 

baseline 

yield) 

Mean yield 

change in % 

(Probability 

in %) 

S.D. in kg/ha 

(as % of 

baseline 

yield) 

Winter wheat station 

Tacheng -7.4 (80.6) 447.3 (7.7) -8.2 (80.6) 484.6 (8.4) -7.9 (74.6) 627.9 (10.9) 

Ruoqiang -3.6 (94.0) 144.0 (2.6) -3.2 (94.0) 231.5 (4.2) -5.1 (91.0) 379.9 (7.0) 

Tongzhou -2.8 (71.6) 424.1 (6.1) -5.8 (58.2) 441.6 (6.3) -8.3 (70.1) 581.2 (8.3) 

Linfen -2.8 (68.7) 302.0 (5.2) -5.6 (85.1) 302.1 (5.2) -9.2 (92.5) 426.5 (7.4) 

Taigu -6.5 (86.6) 325.5 (5.5) -2.2 (61.2) 321.4 (5.4) -3.1 (68.7) 337.7 (5.7) 

Jinghai -6.0 (88.1) 280.3 (5.2) -3.5 (73.1) 278.1 (5.2) -5.5 (76.1) 404.3 (7.6) 

Taian -4.0 (88.1) 218.7 (3.4) -3.1 (82.1) 234.7 (3.6) -5.2 (82.1) 375.6 (5.8) 

Dingxian -8.9 (82.1) 349.4 (8.9) -12.4 (92.5) 437.5 (11.1) -16.2 (83.6) 610.1 (15.5) 

Linyi -3.0 (67.2) 509.4 (10.1) 8.2 (70.9) 500.8 (9.9) 13.6 (80.4) 568.6 (11.3) 

Wugong -3.7 (61.9) 330.0 (6.9) -7.9 (69.2) 315.5 (6.6) -10.8 (71.4) 501.7 (10.5) 

Xuzhou -6.2 (94.0) 274.4 (3.8) -7.6 (91.0) 333.4 (4.6) -8.2 (91.0) 494.7 (6.8) 

Tianshui -10.7 (92.5) 384.8 (7.8) -12.1 (91.0) 514.5 (10.4) -15.0 (85.1) 638.9 (12.9) 

Lasa -8.3 (100.0) 359.3 (3.7) -7.6 (94.0) 466.3 (4.7) -9.2 (97.0) 557.6 (5.7) 

Zhumadian -3.8 (88.1) 283.4 (6.0) -4.9 (88.1) 412.2 (8.8) -8.5 (80.6) 429.9 (9.1) 

Kashi -5.4 (85.1) 415.3 (6.9) -6.3 (88.1) 369.5 (6.2) -9.4 (97.0) 414.4 (6.9) 

Nangong -5.8 (78.1) 210.4 (4.0) -7.5 (83.3) 245.7 (4.7) -9.6 (95.2) 381.2 (7.2) 

Zhengzhou -4.7 (70.5) 255.6 (4.9) -7.5 (77.8) 273.6 (5.3) -9.2 (82.4) 501.7 (9.6) 

Puan -1.9 (58.2) 335.1 (7.5) -1.9 (56.7) 302.7 (6.8) -4.3 (68.7) 372.6 (8.3) 

Hefei -0.7 (58.2) 524.2 (7.1) -2.1 (69.9) 414.9 (5.7) -6.1 (70.3) 603.7 (8.2) 

Kunming -4.6 (80.6) 426.7 (5.4) -5.0 (83.6) 387.3 (4.9) -4.2 (77.6) 541.1 (6.8) 

Baoshan -1.5 (53.7) 302.9 (4.6) -4.7 (89.6) 255.8 (3.9) -7.2 (88.1) 432.4 (6.6) 

Wenjiang -3.7 (80.6) 471.3 (7.0) -4.3 (80.6) 459.8 (6.9) -5.8 (65.7) 549.7 (8.2) 

Songjiang -3.1 (85.1) 310.5 (7.1) -4.9 (79.1) 256.9 (5.9) -5.2 (68.7) 387.3 (8.9) 

Macheng -3.4 (94.0) 313.5 (5.1) -7.0 (91.0) 388.9 (6.3) -9.8 (79.1) 499.4 (8.1) 

Jiangjin -5.6 (62.7) 586.0 (18.1) -7.6 (34.3) 642.8 (19.8) -10.9 (32.8) 851.3 (26.3) 

Longhai -3.1 (68.7) 306.8 (11.4) -4.2 (67.2) 342.2 (12.7) -4.9 (56.7) 529.9 (19.7) 

Spring wheat station 

Jiuquan -9.1 (92.5) 269.1 (5.4) -15.3 (95.2) 452.9 (15.9) -19.5 (98.4) 843.6 (29.6) 

Tulufan -12.4 (92.5) 201.3 (8.9) -23.3 (98.5) 273.2 (12.0) -33.6 (98.5) 489.9 (21.6) 

Dunhuang -5.4 (89.6) 209.7 (4.9) -10.7 (98.5) 339.0 (8.0) -15.2 (94.0) 572.1 (13.5) 

Dingxi -3.1 (79.1) 86.7 (3.6) -4.8 (83.6) 105.3 (4.4) -7.4 (88.1) 174.2 (7.2) 

Guyuan -4.1 (89.6) 116.6 (4.1) -6.6 (98.5) 114.9 (4.0) -9.3 (95.5) 186.7 (6.5) 

Huangyuan -6.0 (95.5) 193.2 (3.4) -9.4 (100.0) 254.0 (4.5) -12.0 (98.5) 397.5 (7.0) 

Guyang -12.5 (100.0) 62.6 (3.8) -18.5 (100.0) 109.5 (6.6) -24.2 (100.0) 236.1 (14.3) 

Aletai -10.7(95.2) 321.7 (8.2) -19.2 (96.7) 484.1 (12.4) -25.6 (98.4) 745.2 (19.1) 

Zhangbei -8.9(100.0) 175.1 (4.1) -9.1 (97.0) 199.2 (4.7) -12.9 (97.0) 386.3 (9.0) 

Huma -9.9 (98.5) 121.4 (5.4) -11.1 (97.0) 133.9 (6.0) -15.7 (95.5) 249.9 (11.2) 

 608 

 609 



Version of the article accepted for publication in Climatic Change published by Springer online 12 Jan 2017. Published 
version available at: http://link.springer.com/article/10.1007/s10584-016-1866-z  
Accepted version downloaded from SOAS Research Online: https://eprints.soas.ac.uk/23476/   
 

25 
 

 610 

 611 

Fig.1 The ensemble yields of irrigated winter wheat (upper panel) and spring wheat (lower 612 

panel) in early (blue), middle (green), and the end (red) of the 21st century. The asterisk 613 

represents the 10–year average irrigated wheat yield from 1996 to 2005 simulated with the 614 

observation data as the baseline. The dot denotes the ensemble mean. 615 

 616 
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