106 research outputs found
A pilot study on acute inflammation and cancer: a new balance between IFN-γ and TGF-β in melanoma
Recent data have redefined the concept of inflammation as a critical component of tumor progression. However, there has been little development on cases where inflammation on or near a wound and a tumor exist simultaneously. Therefore, this pilot study aims to observe the impact of a wound on a tumor, to build a new mouse tumor model with a manufactured surgical wound representing acute inflammation, and to evaluate the relationship between acute inflammation or wound healing and the process of tumor growth. We focus on the two phases that are present when acute inflammation influences tumor. In the early phase, inhibitory effects are present. The process that produces these effects is the functional reaction of IFN-γ secretions from a wound inflammation. In the latter phase, the inhibited tumor is made resistant to IFN-γ through the release of TGF-β to balance the inflammatory factor effect on the tumor cells. A pair of cytokines IFN-γ/TGF-β established a new balance to protect the tumor from the interference effect of the inflammation. The tumor was made resistant to IFN-γ through the release of TGF-β to balance the inflammatory effect on the tumor cells. This balance mechanism that occurred in the tumor cells increased proliferation and invasion. In vitro and in vivo experiments have confirmed a new view of clinical surgery that will provide more detailed information on the evaluation of tumors after surgery. This study also provides a better understanding of the relationship between tumor and inflammation, as well as tumor cell attacks on inflammatory factors
Selenium-Containing Protein From Selenium-Enriched Spirulina platensis Attenuates Cisplatin-Induced Apoptosis in MC3T3-E1 Mouse Preosteoblast by Inhibiting Mitochondrial Dysfunction and ROS-Mediated Oxidative Damage
Accumulated evidences have verified that cancer chemotherapy may increase the risk of osteoporosis and severely affected the life quality. Osteoclasts hyperactivation was commonly accepted as the major pathogenesis of osteoporosis. However, the role of osteoblasts dysfunction in osteoporosis was little investigated. Our previous study has confirmed that selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) exhibited enhanced hepatoprotective potential through inhibiting oxidative damage. Herein, the protective effect of Se-SP against cisplatin-induced osteoblasts dysfunction in MC3T3-E1 mouse preosteoblast was investigated, and the underlying mechanism was evaluated. The results indicated that cisplatin dramatically decreased cell viability of preosteoblast by triggering mitochondria-mediated apoptosis pathway. Cisplatin treatment also caused mitochondrial dysfunction and reactive oxide species (ROS)-mediated oxidative damage. However, Se-SP pre-treatment effectively prevented MC3T3-E1 cells from cisplatin-induced mitochondrial dysfunction by balancing Bcl-2 family expression and regulating the opening of mitochondrial permeability transition pore (MPTP), attenuated cisplatin-induced oxidative damage through inhibiting the overproduction of ROS and superoxide anion, and eventually reversed cisplating-induced early and late apoptosis by inhibiting PARP cleavage and caspases activation. Our findings validated that Se-SP as a promising Se species could be a highly effective way in the chemoprevention and chemotherapy of oxidative damage-mediated bone diseases
Cytotoxicity of peripheral blood leukocytes (PBL) of vaccinated fish.
<p>PBL from turbot vaccinated with or without (control) pCN247, pCN523, or pCN3 were used as effector cells, while PBL from megalocytivirus-infected turbot were used as target cells. The effector and target cells were mixed and incubated for 24 h. The cytotoxicity of the effector cells was determined by lactate dehydrogenase assay. Data are presented as means ± SE (N = 3). N, the number of times the experiment was performed. **<i>P</i> < 0.01.</p
Effect of P247 and P523 knockdown on viral gene expression on a global scale.
<p>Turbot administered with psiP247 (A), psiP523 (B), or psiCR (control) were infected with megalocytivirus, and the expression of 119 viral genes in the spleen was determined by quantitative real time RT-PCR.</p
- …