63 research outputs found

    CD44-SNA1 integrated cytopathology for delineation of high grade dysplastic and neoplastic oral lesions.

    No full text
    The high prevalence of oral potentially-malignant disorders exhibits diverse severity and risk of malignant transformation, which mandates a Point-of-Care diagnostic tool. Low patient compliance for biopsies underscores the need for minimally-invasive diagnosis. Oral cytology, an apt method, is not clinically applicable due to a lack of definitive diagnostic criteria and subjective interpretation. The primary objective of this study was to identify and evaluate the efficacy of biomarkers for cytology-based delineation of high-risk oral lesions. A comprehensive systematic review and meta-analysis of biomarkers recognized a panel of markers (n: 10) delineating dysplastic oral lesions. In this observational cross sectional study, immunohistochemical validation (n: 131) identified a four-marker panel, CD44, Cyclin D1, SNA-1, and MAA, with the best sensitivity (>75%; AUC>0.75) in delineating benign, hyperplasia, and mild-dysplasia (Low Risk Lesions; LRL) from moderate-severe dysplasia (High Grade Dysplasia: HGD) along with cancer. Independent validation by cytology (n: 133) showed that expression of SNA-1 and CD44 significantly delineate HGD and cancer with high sensitivity (>83%). Multiplex validation in another cohort (n: 138), integrated with a machine learning model incorporating clinical parameters, further improved the sensitivity and specificity (>88%). Additionally, image automation with SNA-1 profiled data set also provided a high sensitivity (sensitivity: 86%). In the present study, cytology with a two-marker panel, detecting aberrant glycosylation and a glycoprotein, provided efficient risk stratification of oral lesions. Our study indicated that use of a two-biomarker panel (CD44/SNA-1) integrated with clinical parameters or SNA-1 with automated image analysis (Sensitivity >85%) or multiplexed two-marker panel analysis (Sensitivity: >90%) provided efficient risk stratification of oral lesions, indicating the significance of biomarker-integrated cytopathology in the development of a Point-of-care assay

    Mobile microscopy as a screening tool for oral cancer in India: A pilot study.

    No full text
    Oral cancer is the most common type of cancer among men in India and other countries in South Asia. Late diagnosis contributes significantly to this mortality, highlighting the need for effective and specific point-of-care diagnostic tools. The same regions with high prevalence of oral cancer have seen extensive growth in mobile phone infrastructure, which enables widespread access to telemedicine services. In this work, we describe the evaluation of an automated tablet-based mobile microscope as an adjunct for telemedicine-based oral cancer screening in India. Brush biopsy, a minimally invasive sampling technique was combined with a simplified staining protocol and a tablet-based mobile microscope to facilitate local collection of digital images and remote evaluation of the images by clinicians. The tablet-based mobile microscope (CellScope device) combines an iPad Mini with collection optics, LED illumination and Bluetooth-controlled motors to scan a slide specimen and capture high-resolution images of stained brush biopsy samples. Researchers at the Mazumdar Shaw Medical Foundation (MSMF) in Bangalore, India used the instrument to collect and send randomly selected images of each slide for telepathology review. Evaluation of the concordance between gold standard histology, conventional microscopy cytology, and remote pathologist review of the images was performed as part of a pilot study of mobile microscopy as a screening tool for oral cancer. Results indicated that the instrument successfully collected images of sufficient quality to enable remote diagnoses that show concordance with existing techniques. Further studies will evaluate the effectiveness of oral cancer screening with mobile microscopy by minimally trained technicians in low-resource settings
    • …
    corecore