180 research outputs found
Topological constraints on spiral wave dynamics in spherical geometries with inhomogeneous excitability
We analyze the way topological constraints and inhomogeneity in the
excitability influence the dynamics of spiral waves on spheres and punctured
spheres of excitable media. We generalize the definition of an index such that
it characterizes not only each spiral but also each hole in punctured,
oriented, compact, two-dimensional differentiable manifolds and show that the
sum of the indices is conserved and zero. We also show that heterogeneity and
geometry are responsible for the formation of various spiral wave attractors,
in particular, pairs of spirals in which one spiral acts as a source and a
second as a sink -- the latter similar to an antispiral. The results provide a
basis for the analysis of the propagation of waves in heterogeneous excitable
media in physical and biological systems.Comment: 5 pages, 6 Figures, major revisions, accepted for publication in
Phys. Rev.
The Compressibility of Minimal Lattice Knots
The (isothermic) compressibility of lattice knots can be examined as a model
of the effects of topology and geometry on the compressibility of ring
polymers. In this paper, the compressibility of minimal length lattice knots in
the simple cubic, face centered cubic and body centered cubic lattices are
determined. Our results show that the compressibility is generally not
monotonic, but in some cases increases with pressure. Differences of the
compressibility for different knot types show that topology is a factor
determining the compressibility of a lattice knot, and differences between the
three lattices show that compressibility is also a function of geometry.Comment: Submitted to J. Stat. Mec
Minimal knotted polygons in cubic lattices
An implementation of BFACF-style algorithms on knotted polygons in the simple
cubic, face centered cubic and body centered cubic lattice is used to estimate
the statistics and writhe of minimal length knotted polygons in each of the
lattices. Data are collected and analysed on minimal length knotted polygons,
their entropy, and their lattice curvature and writhe
Entropic Tightening of Vibrated Chains
We investigate experimentally the distribution of configurations of a ring
with an elementary topological constraint, a ``figure-8'' twist. Using vibrated
granular chains, which permit controlled preparation and direct observation of
such a constraint, we show that configurations where one of the loops is tight
and the second is large are strongly preferred. This agrees with recent
predictions for equilibrium properties of topologically-constrained polymers.
However, the dynamics of the tightening process weakly violate detailed
balance, a signature of the nonequilibrium nature of this system.Comment: 4 pages, 4 figure
Knot localization in adsorbing polymer rings
We study by Monte Carlo simulations a model of knotted polymer ring adsorbing
onto an impenetrable, attractive wall. The polymer is described by a
self-avoiding polygon (SAP) on the cubic lattice. We find that the adsorption
transition temperature, the crossover exponent and the metric exponent
, are the same as in the model where the topology of the ring is
unrestricted. By measuring the average length of the knotted portion of the
ring we are able to show that adsorbed knots are localized. This knot
localization transition is triggered by the adsorption transition but is
accompanied by a less sharp variation of the exponent related to the degree of
localization. Indeed, for a whole interval below the adsorption transition, one
can not exclude a contiuous variation with temperature of this exponent. Deep
into the adsorbed phase we are able to verify that knot localization is strong
and well described in terms of the flat knot model.Comment: 27 pages, 10 figures. Submitter to Phys. Rev.
Critical exponents for random knots
The size of a zero thickness (no excluded volume) polymer ring is shown to
scale with chain length in the same way as the size of the excluded volume
(self-avoiding) linear polymer, as , where . The
consequences of that fact are examined, including sizes of trivial and
non-trivial knots.Comment: 4 pages, 0 figure
On the Dominance of Trivial Knots among SAPs on a Cubic Lattice
The knotting probability is defined by the probability with which an -step
self-avoiding polygon (SAP) with a fixed type of knot appears in the
configuration space. We evaluate these probabilities for some knot types on a
simple cubic lattice. For the trivial knot, we find that the knotting
probability decays much slower for the SAP on the cubic lattice than for
continuum models of the SAP as a function of . In particular the
characteristic length of the trivial knot that corresponds to a `half-life' of
the knotting probability is estimated to be on the cubic
lattice.Comment: LaTeX2e, 21 pages, 8 figur
Abundance of unknots in various models of polymer loops
A veritable zoo of different knots is seen in the ensemble of looped polymer
chains, whether created computationally or observed in vitro. At short loop
lengths, the spectrum of knots is dominated by the trivial knot (unknot). The
fractional abundance of this topological state in the ensemble of all
conformations of the loop of segments follows a decaying exponential form,
, where marks the crossover from a mostly unknotted
(ie topologically simple) to a mostly knotted (ie topologically complex)
ensemble. In the present work we use computational simulation to look closer
into the variation of for a variety of polymer models. Among models
examined, is smallest (about 240) for the model with all segments of the
same length, it is somewhat larger (305) for Gaussian distributed segments, and
can be very large (up to many thousands) when the segment length distribution
has a fat power law tail.Comment: 13 pages, 6 color figure
The Computational Complexity of Knot and Link Problems
We consider the problem of deciding whether a polygonal knot in 3-dimensional
Euclidean space is unknotted, capable of being continuously deformed without
self-intersection so that it lies in a plane. We show that this problem, {\sc
unknotting problem} is in {\bf NP}. We also consider the problem, {\sc
unknotting problem} of determining whether two or more such polygons can be
split, or continuously deformed without self-intersection so that they occupy
both sides of a plane without intersecting it. We show that it also is in NP.
Finally, we show that the problem of determining the genus of a polygonal knot
(a generalization of the problem of determining whether it is unknotted) is in
{\bf PSPACE}. We also give exponential worst-case running time bounds for
deterministic algorithms to solve each of these problems. These algorithms are
based on the use of normal surfaces and decision procedures due to W. Haken,
with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur
Knotting probabilities after a local strand passage in unknotted self-avoiding polygons
We investigate the knotting probability after a local strand passage is
performed in an unknotted self-avoiding polygon on the simple cubic lattice. We
assume that two polygon segments have already been brought close together for
the purpose of performing a strand passage, and model this using Theta-SAPs,
polygons that contain the pattern Theta at a fixed location. It is proved that
the number of n-edge Theta-SAPs grows exponentially (with n) at the same rate
as the total number of n-edge unknotted self-avoiding polygons, and that the
same holds for subsets of n-edge Theta-SAPs that yield a specific
after-strand-passage knot-type. Thus the probability of a given
after-strand-passage knot-type does not grow (or decay) exponentially with n,
and we conjecture that instead it approaches a knot-type dependent amplitude
ratio lying strictly between 0 and 1. This is supported by critical exponent
estimates obtained from a new maximum likelihood method for Theta-SAPs that are
generated by a composite (aka multiple) Markov Chain Monte Carlo BFACF
algorithm. We also give strong numerical evidence that the after-strand-passage
knotting probability depends on the local structure around the strand passage
site. Considering both the local structure and the crossing-sign at the strand
passage site, we observe that the more "compact" the local structure, the less
likely the after-strand-passage polygon is to be knotted. This trend is
consistent with results from other strand-passage models, however, we are the
first to note the influence of the crossing-sign information. Two measures of
"compactness" are used: the size of a smallest polygon that contains the
structure and the structure's "opening" angle. The opening angle definition is
consistent with one that is measurable from single molecule DNA experiments.Comment: 31 pages, 12 figures, submitted to Journal of Physics
- …