352 research outputs found

    Lie Markov models with purine/pyrimidine symmetry

    Get PDF
    Continuous-time Markov chains are a standard tool in phylogenetic inference. If homogeneity is assumed, the chain is formulated by specifying time-independent rates of substitutions between states in the chain. In applications, there are usually extra constraints on the rates, depending on the situation. If a model is formulated in this way, it is possible to generalise it and allow for an inhomogeneous process, with time-dependent rates satisfying the same constraints. It is then useful to require that there exists a homogeneous average of this inhomogeneous process within the same model. This leads to the definition of "Lie Markov models", which are precisely the class of models where such an average exists. These models form Lie algebras and hence concepts from Lie group theory are central to their derivation. In this paper, we concentrate on applications to phylogenetics and nucleotide evolution, and derive the complete hierarchy of Lie Markov models that respect the grouping of nucleotides into purines and pyrimidines -- that is, models with purine/pyrimidine symmetry. We also discuss how to handle the subtleties of applying Lie group methods, most naturally defined over the complex field, to the stochastic case of a Markov process, where parameter values are restricted to be real and positive. In particular, we explore the geometric embedding of the cone of stochastic rate matrices within the ambient space of the associated complex Lie algebra. The whole list of Lie Markov models with purine/pyrimidine symmetry is available at http://www.pagines.ma1.upc.edu/~jfernandez/LMNR.pdf.Comment: 32 page

    FeH Absorption in the Near-Infrared Spectra of Late M and L Dwarfs

    Get PDF
    We present medium-resolution z-, J-, and H-band spectra of four late-type dwarfs with spectral types ranging from M8 to L7.5. In an attempt to determine the origin of numerous weak absorption features throughout their near-infrared spectra, and motivated by the recent tentative identification of the E 4\Pi- A ^4\Pi system of FeH near 1.6 microns in umbral and cool star spectra, we have compared the dwarf spectra to a laboratory FeH emission spectrum. We have identified nearly 100 FeH absorption features in the z-, J-, and H-band spectra of the dwarfs. In particular, we have identified 34 features which dominate the appearance of the H-band spectra of the dwarfs and which appear in the laboratory FeH spectrum. Finally, all of the features are either weaker or absent in the spectrum of the L7.5 dwarf which is consistent with the weakening of the known FeH bandheads in the spectra of the latest L dwarfs.Comment: accepted by Ap

    Panel: COVID-19 Challenges to Project Management

    Get PDF
    COVID-19 has presented many new challenges and new opportunities for project management professionals and IT leaders. This panel will address these challenges and identify project management best practices and processes which have been effective in meeting these challenges. The panelists will share specific instances and challenges explaining how Project Cost Management, Time Management, Risk Management, Human Resources Management, and Risk Management have enabled them to manage during the pandemic and as a part of “return-to-work” scenarios. Hearing from these leaders as they accomplish digital transformations for their businesses and organizations will be an opportunity to bridge the gap between research and practice and to establish a dialogue between academic leaders and IT industry leaders which will provide many new questions to come

    Proton‐induced Thermonuclear Reaction Rates for A = 20–40 Nuclei

    Get PDF
    Proton-induced reaction rates on 26 stable and 29 unstable target nuclei in the mass A = 20–40 region have been evaluated and compiled. Recommended reaction rates, assuming that all interacting nuclei are in the ground state, are presented in tabular form on a temperature grid in the range T = 0.01–10.0 GK. Most reaction rates involving stable targets were normalized to a set of measured standard resonance strengths in the sd shell. For the majority of reaction rates, experimental information from transfer reaction studies has been used consistently. Our results are compared with recent statistical model (Hauser-Feshbach) calculations. Reaction rate uncertainties are presented and amount to several orders of magnitude for many of the reactions. Several of these reaction rates and/or their corresponding uncertainties deviate from results of previous compilations. In most cases, the deviations are explained by the fact that new experimental information became available recently. Examples are given for calculating reaction rates and reverse reaction rates for thermally excited nuclei from the present results. The survey of literature for this review was concluded in 2000 August

    Is the general time-reversible model bad for molecular phylogenetics?

    Full text link
    The general time reversible model (GTR) is presently the most popular model used in phylogentic studies. However, GTR has an undesirable mathematical property that is potentially of significant concern. It is the purpose of this article to give examples that demonstrate why this deficit may pose a problem for phylogenetic analysis and interpretation.Comment: 10 pages, 2 figure

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s−1^{-1} and an ejecta mass of few ×10−5\times 10^{-5} M⊙_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure

    UK science press officers, professional vision and the generation of expectations

    Get PDF
    Science press officers can play an integral role in helping promote expectations and hype about biomedical research. Using this as a starting point, this article draws on interviews with 10 UK-based science press officers, which explored how they view their role as science reporters and as generators of expectations. Using Goodwin’s notion of ‘professional vision’, we argue that science press officers have a specific professional vision that shapes how they produce biomedical press releases, engage in promotion of biomedical research and make sense of hype. We discuss how these insights can contribute to the sociology of expectations, as well as inform responsible science communication.This project was funded by the Wellcome Trust (Wellcome Trust Biomedical Strategic Award 086034)

    Inherent limits of light-level geolocation may lead to over-interpretation

    Get PDF
    In their 2015 Current Biology paper, Streby et al. [1] reported that Golden-winged Warblers (Vermivora chrysoptera), which had just migrated to their breeding location in eastern Tennessee, performed a facultative and up to “>1,500 km roundtrip” to the Gulf of Mexico to avoid a severe tornadic storm. From light-level geolocator data, wherein geographical locations are estimated via the timing of sunrise and sunset, Streby et al. [1] concluded that the warblers had evacuated their breeding area approximately 24 hours before the storm and returned about five days later. The authors presented this finding as evidence that migratory birds avoid severe storms by temporarily moving long-distances. However, the tracking method employed by Streby et al. [1] is prone to considerable error and uncertainty. Here, we argue that this interpretation of the data oversteps the limits of the used tracking technique. By calculating the expected geographical error range for the tracked birds, we demonstrate that the hypothesized movements fell well within the geolocators’ inherent error range for this species and that such deviations in latitude occur frequently even if individuals remain stationary
    • 

    corecore